

Electron cooling of bunched ion beams and recent results at the Heidelberg cryogenic storage ring (CSR)

Patrick Wilhelm for the **CSR Team**

Max Planck Institute for Nuclear Physics

COOL 2017 Bonn

Outline

- The Cryogenic Storage Ring
- Rotational cooling of stored molecules
- The CSR electron cooler
- Beam Time 2017: Recent results
- Outlook: Electron-beam collision studies

Outline

• The Cryogenic Storage Ring

- Rotational cooling of stored molecules
- The CSR electron cooler
- Beam Time 2017: Recent results
- Outlook: Electron-beam collision studies

The CSR – motivation

Eagle nebula

Cold molecular clouds in the ISM: Astrochemistry

The CSR – motivation

Cold molecular clouds in the ISM: Astrochemistry

(AP B)
WATHTAN TO COMPLEX THE TANT

	CSR	interstellar clouds
Temperature	< 10 K	~ 10 – 150 K
Density	~ 100 cm ⁻³	$\sim 10 - 1000 \text{ cm}^{-3}$

Cold molecular clouds in the ISM: Astrochemistry

	CSR	interstellar clouds
Temperature	< 10 K	~ 10 – 150 K
Density	~ 100 cm ⁻³	~ 10 – 1000 cm ⁻³

- \rightarrow storage times > 1000s
- → electrostatic: mass-independent storage of ion beams
- ightarrow molecular ions in well-defined quantum states
- \rightarrow merged beam experiments at low collision energies

Goal: Rotationally resolved state-to-state studies

The CSR – overview

The CSR – electrostatic beam optics

- fully **electrostatic** storage → mass independent
- 24 optical elements
 - 4 x 2 pairs of quadrupoles (10 kV)
 - 4 x 2 6°-deflector electrodes (30 kV)
 - 4 x 2 39°-deflector electrodes (30 kV)
 - 4 field-free straight sections (2.4 m each)

The CSR – cryogenics

- Multi-layer cryostat
 - Inner vacuum chamber ≤ 10 K
 - 2 radiation shields (40 K & 80 K)
 - Multi-layer insulation
 - Isolation vacuum chamber

 cooled by closed-cycle helium system

The CSR – cryogenics

- Multi-layer cryostat
 - Inner vacuum chamber ≤ 10 K
 - 2 radiation shields (40 K & 80 K)
 - Multi-layer insulation
 - Isolation vacuum chamber

 cooled by closed-cycle helium system

The CSR – Experimental Setup

Movable particle counter for charged fragments

The CSR – residual gas density

The CSR – residual gas density

The CSR – storage lifetime

Outline

• The Cryogenic Storage Ring

- Rotational cooling of stored molecules
- The CSR electron cooler
- Beam Time 2017: Recent results
- Outlook: Electron-beam collision studies

"antenna": stored molecules equilibrate with black body radiation field

J: rotational level

- What is the internal temperature of a stored molecular ion?
- What is the radiative field in the CSR?
- Space (ISM) conditions?

measuring the population of rotational states

 \rightarrow internal state thermometry

(cm⁻¹)

S. George H. Kreckel

C. Meyer

п. кгескег

O. Novotný

A. Wolf (MPIK)

state-selective OH- photodetachment

Measured photodetachment rates

C. Meyer, Phys. Rev. Lett. 119, 023202 (2017)

state-selective OH- photodetachment

Measured photodetachment rates

C. Meyer, Phys. Rev. Lett. 119, 023202 (2017)

Population of ~ 90% in J = 0 ~ 15 K effective blackbody field

C. Meyer

H. Kreckel

O. Novotný

A. Wolf (MPIK)

state-selective OH- photodetachment

Measured photodetachment rates

C. Meyer, Phys. Rev. Lett. 119, 023202 (2017)

Population of ~ 90% in J = 0 ~ 15 K effective blackbody field

1st direct pure-rotational lifetime in-vacuo measurement

OH⁻ rotational level lifetimes and dipole moment

	$ au = A_J^{-1} ext{ (s)}$	μ_0 (D)
J=1	193(7)	0.970(17)
J=2	20.9(2.1)	0.952(48)
J=3	5.30(37)	0.997(35)

C. Meyer S. George

H. Kreckel

O. Novotný

A. Wolf

(MPIK)

state-selective OH- photodetachment

Measured photodetachment rates

C. Meyer, Phys. Rev. Lett. 119, 023202 (2017)

Population of ~ 90% in J = 0 ~ 15 K effective blackbody field

1st direct pure-rotational lifetime in-vacuo measurement

OH⁻ rotational level lifetimes and dipole moment

	$ au = A_J^{-1} ext{ (s)}$	$\mu_0~(\mathrm{D})$
J=1	193(7)	0.970(17)
J=2	20.9(2.1)	0.952(48)
J=3	5.30(37)	0.997(35)

Outline

- The Cryogenic Storage Ring
- Rotational cooling of stored molecules
- The CSR electron cooler
- Beam Time 2017: Recent results
- Outlook: Electron-beam collision studies

$$E_e = \frac{m_e}{m_i} \cdot Ei$$

Storage time

high densities & low temperature

• cooler must be contained in CSR cryostat \rightarrow 10 K, 10⁻¹³ mbar, bakeable to 250°C

- Variable electron energy (drift tube)
- Beam diagnostics (two wire scanners)

steering copper coil pairs located inside aluminum body for toroidal drift compensation

High-temperature superconductor attached onto cooled copper strips distributes ~ 60 A currents to the magnets

Independent HTS coil-cooling system provides sufficient cooling power for the HTS magnets

30W @ 30K

Low cryogen inventory, forced flow Ne cooling system with room temperature compression stage and heat recuperation

A. Shornikov*, C. Krantz, A. Wolf

Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany

ARTICLE INFO

ABSTRACT

Article history: Received 11 October 2013 Received in revised form 4 December 2013 We present design and commissioning results of a forced flow cooling system util cryogen is pumped through the system by a room-temperature compression stag zone from the compression stage. Technological stage is a stage of the stage of th

The CSR electron cooler – temperature spreads

Ultra low energy electron deceleration scheme

• difference of contact potentials ~ $E_{kin,e}$ ~ $U_{space charge}$ ~ eV !

A. Shornikov et al., Phys. Rev. ST Accel. Beams 17, 042802 (2014)

Electron density in interaction region

A. Shornikov, phd thesis

Outline

- The Cryogenic Storage Ring
- Rotational cooling of stored molecules
- The CSR electron cooler
- Beam Time 2017: Recent results
- Outlook: Electron-beam collision studies

- F6+ acceleration voltage = 223 kV
 - → E(F6+) = 1.34 MeV
 - → Ee = 38.7 eV
- F6+ current ~ 300 nA
- N ~ 1e6 particles
- rf bunching frequency = 2nd harmonic of revolution frequency ~ 214 kHz

capacitive current pickup

- F6+ acceleration voltage = 223 kV
 - → E(F6+) = 1.34 MeV
 - → Ee = 38.7 eV
- F6+ current ~ 300 nA
- N ~ 1e6 particles
- rf bunching frequency = 2nd harmonic of revolution frequency ~ 214 kHz

capacitive current pickup

- F6+ acceleration voltage = 223 kV
 - → E(F6+) = 1.34 MeV
 - → Ee = 38.7 eV
- F6+ current ~ 300 nA
- N ~ 1e6 particles
- rf bunching frequency = 2nd harmonic of revolution frequency ~ 214 kHz

second: Ion beam injection +3 seconds: Electron beam on +5 seconds: Electron beam off

capacitive current pickup

- F6+ acceleration voltage = 223 kV
 - → E(F6+) = 1.34 MeV
 - → Ee = 38.7 eV
- F6+ current ~ 300 nA
- N ~ 1e6 particles
- rf bunching frequency = 2nd harmonic of revolution frequency ~ 214 kHz

capacitive current pickup

- F6+ acceleration voltage = 223 kV
 - → E(F6+) = 1.34 MeV
 - → Ee = 38.7 eV
- F6+ current ~ 300 nA
- N ~ 1e6 particles
- rf bunching frequency = 2nd harmonic of revolution frequency ~ 214 kHz

Time [µs]

Space charge limitation of bunch length

$$\mathbf{U}_{\text{eff}}(\Delta \phi) = \mathbf{U} \cdot \sin(\Delta \phi + \phi_{s}) + \mathbf{U}_{s}(\Delta \phi)$$

$$\mathbf{U}_{\mathbf{s}}(\Delta \boldsymbol{\phi}) = \mathbf{E}_{\mathbf{s}}(\Delta \boldsymbol{\phi}) \cdot \mathbf{C}_{\mathbf{0}}$$

$$E_{\parallel}(s) = -\frac{1+2\ln(\frac{R}{r})}{4\pi\epsilon_0\gamma^2}\frac{\partial\lambda(s)}{\partial s}$$

Proceedings of COOL2013, Murren, Switzerland

WEAM1HA03

COOLING ACTIVITIES AT THE TSR STORAGE RING

M. Grieser, S. Artikova, R. Bastert, K. Blaum, A. Wolf Max-Planck-Institut für Kernphysik, D-69029 Heidelberg, Germany

Space charge limitation of bunch length

Proceedings of COOL2013, Murren, Switzerland

WEAM1HA03

COOLING ACTIVITIES AT THE TSR STORAGE RING

M. Grieser, S. Artikova, R. Bastert, K. Blaum, A. Wolf Max-Planck-Institut für Kernphysik, D-69029 Heidelberg, Germany $\mathbf{U}_{\text{eff}}(\Delta \phi) = \mathbf{U} \cdot \sin(\Delta \phi + \phi_s) + \mathbf{U}_s(\Delta \phi)$

$$\mathbf{U}_{\mathbf{s}}(\Delta \boldsymbol{\phi}) = \mathbf{E}_{\mathbf{s}}(\Delta \boldsymbol{\phi}) \cdot \mathbf{C}_{\mathbf{0}}$$

$$E_{\parallel}(s) = -\frac{1+2\ln(\frac{R}{r})}{4\pi\epsilon_0\gamma^2}\frac{\partial\lambda(s)}{\partial s}$$

$$\lambda(s) = \frac{3N_BQ}{4w_s}(1 - \frac{s^2}{w_s^2})$$

parabola profile: only distribution to compensate the synchrotron motion of each ion (for $\Delta \phi \ll 2\pi$)

Space charge limitation of bunch length

synchronous particle

- RF resonator voltage is compensated by space \rightarrow charge voltage of the ion beam
- frozen synchrotron oscillation \rightarrow
- Electron cooling creates a stable, space charge \rightarrow limited bunch length

$$\mathbf{U}_{\text{eff}}(\Delta \phi) = \mathbf{U} \cdot \sin(\Delta \phi + \phi_{s}) + \mathbf{U}_{s}(\Delta \phi)$$

$$\mathbf{U}_{\mathbf{s}}(\Delta \boldsymbol{\phi}) = \mathbf{E}_{\mathbf{s}}(\Delta \boldsymbol{\phi}) \cdot \mathbf{C}_{\mathbf{0}}$$

$$E_{\parallel}(s) = -\frac{1+2\ln(\frac{R}{r})}{4\pi\epsilon_0\gamma^2}\frac{\partial\lambda(s)}{\partial s}$$

$$\lambda(s) = \frac{3N_BQ}{4w_s}(1 - \frac{s^2}{w_s^2})$$

parabola profile: only distribution to compensate the synchrotron motion of each ion (for $\Delta \phi \ll 2\pi$)

Outline

- The Cryogenic Storage Ring ٠
- Rotational cooling of stored molecules •
- The CSR electron cooler
- Beam Time 2017: Recent results •
- **Outlook: Electron-beam collision studies**

$$E_{coll} = \frac{1}{2} m_e (v_e - v_i)^2$$

can be scanned from ~ 1 meV ... 50 eV

 $ABC^{+}(J) + e^{-} \rightarrow ABC^{+}(J') + e^{-}$

internal cooling/heating by inelastic electron collisions

$$ABC^{+}(J) + e^{-} \rightarrow ABC^{+}(J') + e^{-}$$

internal cooling/heating by inelastic electron collisions

Collaboration: C. Greene, S. Kokoouline, R. Curik, arXiv:1705.10153

$$ABC^{+}(J) + e^{-} \rightarrow ABC^{+}(J') + e^{-}$$

internal cooling/heating by inelastic electron collisions

Collaboration: C. Greene, S. Kokoouline, R. Curik, arXiv:1705.10153

Summary

Special thanks to Stephen Vogel Oldrich Novotný Marius Rimmler ANDREAS WOLF

- ion-beam storage lifetime up to ~1h
- molecular ions cool down to 15 K
- facilities for cold molecular collisions with
 - photons
 - electrons
 - neutral atoms

Photodetachment: OH⁻ beam stored over 20 min

Radiative rotational level lifetimes & dipole moments

	$ au = A_J^{-1} \ (ext{s})$	$\mu_0~(\mathrm{D})$
J = 1	193(7)	0.970(17)
J=2	20.9(2.1)	0.952(48)
J=3	5.30(37)	0.997(35)

June 2017: First (bunched-beam) electron cooling in an electrostatic storage ring

> *in preperation:* Low-temperature inelastic electron-ion collision studies

Thank you for your attention!

FÜR KERNPHYSIK

JUSTUS-LIEBIG-UNIVERSITAT GIESSEN

The

CSR Team

