Overview of US Electron-lon Collider Project and Its Cooling Programs

Yuhong Zhang

Thomas Jefferson National Accelerator Facility

COOL'17 - International Workshop on Beam Cooling and Related Topics

Sept. 16-22, 2017, Bonn, German

Outline

- Introduction
- BNL eRHIC Design
- JLab JLEIC Design
- eRHIC Beam Cooling
- JLEIC Beam Cooling

COOL'17

- Additional topics: Experiment, Simulation and Advanced Concepts
- Summary

Jefferson Lab

Introduction

- Electron-Ion collider (EIC) utilizes deep-inelastic scatterings to probe structures of nucleus
- *HERA*, the only e-p collider ever built and operated, ended its science program in 2007. Over the past 15 years, 7 next generation EICs were envisioned worldwide for high energy and nuclear physics.
- In US, two electron-ion colliders, eRHIC and JLEIC, have been proposed in BNL and JLab respectively. The US EIC designs were guided by the science program (EIC White Paper)
- The US NSAC Long Range Plan (2015) recommended EIC as the next major facility in US for QCD frontier. If approved by DOE, construction will likely be completed around 2025
- Cooling of proton/ion beams is essential for eRHIC and JLEIC to reach luminosity above 10³⁴ /cm²/s. It enables emittance reduction up to an order of magnitude in all dimensions
- eRHIC adopts novel Coherent-electron-Cooling (CeC) concept. JLEIC has chosen magnetized electron cooling for the baseline, utilizing a multi-stage cooling scheme
- Both CeC and high energy magnetized EC are under active development

Jefferson Lab

COOL'17

- BNL plans to conduct a proof-of-principle test of CeC at RHIC next year;
- JLab focuses on a technical design and technology development for a high energy bunched beam electron cooler based on ERL and circulator ring.

HERA@DESY: The World 1st ep Collider

ZEUS detector

COOL'17

Jefferson Lab

Thomas Jefferson National Accelerator Facility

Time / Years

A New World of Electron-Ion Colliders

Thomas Jefferson National Accelerator Facility

Jefferson Lab

COOL'17

A New EIC for The Next QCD Frontier

A Gluon Microscopy for Understanding the Glue that Binds Us All

Jefferson Lab

COOL'17

EIC Machine Requirements from White Paper

Will Be World's *first* !

Polarized electron-proton/light ion collider Electron-Nucleus collider

e-p collisions

- ✓ More than one interaction point
- ✓ Polarized beams: e, p (>70%)
- ✓ Variable CM: 20-~100 (~140) GeV
- ✓ Electron beam: 3-10(20) GeV
- ✓ Proton beam: up to 250 GeV
- ✓ Luminosity ~ 10³³⁻³⁴ cm⁻²s⁻¹
 100-1000 times HERA

e-A collisions

✓ Wide range in nuclei

(deuteron to heaviest uranium or lead)

- ✓ Polarized beams: e, d/³He (>70%)
- Luminosity per nucleon same as *e-p*
- ✓ Variable center of mass energy

Two Labs Looking for Hosting the US EIC

Needs an electron beam

Based on RHIC and its injector complex

- polarized proton and ³He, up to 250 GeV/u
- other all-stripped ions, up to gold 100 GeV/u

Add a polarized electron beam up to 18 GeV

– A recirculating ERL (*linac-ring* design)

COOL'17

Jefferson Lab

A storage ring (*ring-ring* design) (*present* baseline)

Needs a proton/ion beam

- Based on CEBAF recirculated SRF linac
 - polarized electron beam up to 12 GeV,
- Add ion injector and two storage rings (*ring-ring* design)
 - Polarized proton, deuteron and ³He

- Other all stripped ions, up to lead
- Up to 100 GeV/u ion energy

Outline

- Introduction
- BNL eRHIC Design
- JLab JLEIC Design
- Outlook of US EIC Project
- eRHIC Beam Cooling
- JLEIC Beam Cooling
- Additional topics: Experiment, Simulations and Advanced Concepts
- Summary

COOL'17

Jefferson Lab

- In a linac-ring collider, a lepton beam can tolerate much higher beam-beam perturbations since the beam is not stored/reused
- It could (*theoretically*) achieved a much higher luminosity than a ring-ring collider of *same collision frequency* and other beam parameters
- ERL is a practical way to accelerate high current beam with a low RF power

10

 Design had gone several round of revisions. The latest one is *Non-Scaling Fixed-Field Alternating Gradient* (NS-FFAG)

- In a linac-ring collider, a lepton beam can tolerate much higher beam-beam perturbations since the beam is not stored/reused
- It could (*theoretically*) achieved a much higher luminosity than a ring-ring collider of *same collision frequency* and other beam parameters
- ERL is a practical way to accelerate high current beam with a low RF power
- Design had gone several round of revisions. The latest one is *Non-Scaling Fixed-Field Alternating Gradient* (NS-FFAG)

- In a linac-ring collider, a lepton beam can tolerate much higher beam-beam perturbations since the beam is not stored/reused
- It could (*theoretically*) achieved a much higher luminosity than a ring-ring collider of *same collision frequency* and other beam parameters
- ERL is a practical way to accelerate high current beam with a low RF power
- Design had gone several round of revisions. The latest one is Non-Scaling Fixed-Field Alternating **Gradient** (NS-FFAG)

15.88 GeV 17.20 GeV 18.52 GeV #4 11.91 GeV #10 19.84 GeV 13.23 GeV #11 21.16 GeV

	LR Nomi	nal design	LR Ultimate design		
	е	р	е	р	
Energy [GeV]	10	250	8.3	250	
CM energy [GeV]	10	00	9	1	
Bunch frequency [MHz]	9	.4	9	.4	
Bunch intensity [10 ¹⁰]	1.7	20	3.3	30	
Beam current [mA]	26	277	50	415	
rms norm.emittance h/v[um]	36.7/36.7	0.5/0.5	16.5/16.5	0.27/0.27	
rms emittance h/v [nm]	1.9/1.9	1.9/1.9	1.0/1.0	1.0/1.0	
beta*, h/v [cm]	12.5/12.5	12.5/12.5	7/7	7/7	
IP rms beam size h/v [um]	15.3	/15.3	8.4	8.4	
IP rms angspread h/v [urad]	120/120	120/120	120/120	120/120	
max beam-beam parameter	1.2	0.004	4.1	0.015	
e-beam disruption parameter	20		36		
max space charge parameter	1.4e-4	0.006	8.6e-4 🤇	0.058	
rms bunch length [cm]	0.3	16.5	0.3	5	
Polarization [%]	80	70	80	70	
Peak luminosity [10 ³³ cm ⁻² s ⁻¹]	1	.0	14.4		

Required

R&D

Jefferson La

Polarized electron gun

Coherent Electron Cooling

Crab cavities

Polarized ³He production

Linac-ring beam-beam affects

B*=5 cm

HOM damped SRF cavities

Multi-pass SRF ERL with FFAG arcs -

eRHIC Present Baseline: Ring-Ring

- Based on existing RHIC with up to 275 GeV polarized protons and up to 100 GeV/u gold ions
- Additional electron storage ring with (5 18) GeV in the RHIC tunnel
 - Up to 2.7 A current 1320 bunches per ring similar to B-Factories
 - 10 MW maximum RF power (administrative limit)
- Need strong cooling of the hadron beam emittances
- Proton bunch intensities moderate: 0.75.10¹¹, achieved in RHIC
- On-energy polarized electron injector (up to 18 GeV)

COOL'17

Jefferson Lab

Designed for maximum peak luminosity 1.1x10³⁴ /cm²/s

		No Hadro	n Cooling	Strong Hadro	on Cooling
Parameter	Units	Protons	Electrons	Protons	Electrons
Center of Mass Energy	GeV	10	00	10	0
Beam Energy	GeV	275	10	275	10
Particles/bunch	10 ¹⁰	11.6	31	5.6	15.1
Beam Current	mA	456	1253	920	2480
Number of Bunches		33	30	132	.0
Hor. Emittance	nm	17.6	24.4	8.3	24.4
Vertical Emittance	nm	6.76	3.5	3.1	1.7
β_{x^*}	cm	94	62	47	16
β _γ *	cm	4.2	7.3	2.1	3.7
σ , '*	mrad	0.137	0.2	0.13	0.39
σ,'*	mrad	0.401	0.22	0.38	0.21
Beam-Beam ξ _x		0.014	0.084	0.012	0.047
Beam-Beam ξ _y		0.0048	0.075	0.0043	0.084
τ _{IBS} long/hor	hours	10/8	-	4.4/2.0	-
Synchr. Rad Power	MW	-	6.5	-	10
Bunch Length	cm	7	0.3	3.5	0.3
Luminosity	10 ³⁴ cm ⁻² s ⁻¹	0.	29	1.21	

COOL'17

Thomas Jefferson National Accelerator Facility

		No Hadro	n Cooling	Strong Hadron Cooling		
Parameter	Units	Protons	Electrons	Protons	Electrons	
Center of Mass Energy	GeV	1	00	10	0	
Beam Energy	GeV	275	10	275	10	
Particles/bunch	10 ¹⁰	11.6	31	5.6	15.1	
Beam Current	mA	456	1253	920	2480	
Number of Bunches		3	30	132	20	
Hor. Emittance	nm	17.6	24.4	8.3	24.4	
Vertical Emittance	nm	6.76	3.5	3.1	1.7	
β_{x^*}	cm	94	62	47	16	
βγ*	cm	4.2	7.3	2.1	3.7	
σ _x '*	mrad	0.137	0.2	0.13	0.39	
σ,'*	mrad	0.401	0.22	0.38	0.21	
Beam-Beam ξ _x		0.014	0.084	0.012	0.047	
Beam-Beam ξ _y		0.0048	0.075	0.0043	0.084	
τ_{IBS} long/hor	hours	10/8	-	4.4/2.0	-	
Synchr. Rad Power	MW	-	6.5	-	10	
Bunch Length	cm	7	0.3	3.5	0.3	
Luminosity	10 ³⁴ cm ⁻² s ⁻¹	0.	29	1.21		

COOL'17

Thomas Jefferson National Accelerator Facility

		No Hadro	n Cooling	Strong Hadro	on Cooling	
Parameter	Units	Protons	Electrons	Protons	Electrons	
Center of Mass Energy	GeV	10	00	10	0	
Beam Energy	GeV	275	10	275	10	
Particles/bunch	10 ¹⁰	11.6	31	5.6	15.1	
Beam Current	mA	456	1253	920	2480	
Number of Bunches		33	30	132	20	
Hor. Emittance	nm	17.6	24.4	8.3	24.4	_
Vertical Emittance	nm	6.76	3.5	3.1	1.7	-'S
β_{x^*}	cm	94	62	47	16	cm ^{-r} s
β _γ *	cm	4.2	7.3	2.1	3.7	sity [c
σ [,] *	mrad	0.137	0.2	0.13	0.39	mino
σ,'*	mrad	0.401	0.22	0.38	0.21	⊇
Beam-Beam ξ _x		0.014	0.084	0.012	0.047	
Beam-Beam ξ _y		0.0048	0.075	0.0043	0.084	
τ _{IBS} long/hor	hours	10/8	-	4.4/2.0	-	
Synchr. Rad Power	MW	-	6.5	-	10	
Bunch Length	cm	7	0.3	3.5	0.3	
Luminosity	10 ³⁴ cm ⁻² s ⁻¹	0.	29	1.2	1	

COOL'17

Thomas Jefferson National Accelerator Facility

		No Hadro	n Cooling	Strong Hadro	on Cooling
Parameter	Units	Protons	Electrons	Protons	Electrons
Center of Mass Energy	GeV	10	00	10	0
Beam Energy	GeV	275	10	275	10
Particles/bunch	10 ¹⁰	11.6	31	5.6	15.1
Beam Current	mA	456	1253	920	2480
Number of Bunches		33	30	132	.0
Hor. Emittance	nm	17.6	24.4	8.3	24.4
Vertical Emittance	nm	6.76	3.5	3.1	1.7
β_{x^*}	cm	94	62	47	16
β _y *	cm	4.2	7.3	2.1	3.7
σ , '*	mrad	0.137	0.2	0.13	0.39
σ,'*	mrad	0.401	0.22	0.38	0.21
Beam-Beam ξ_x		0.014	0.084	0.012	0.047
Beam-Beam ξ _y		0.0048	0.075	0.0043	0.084
τ_{IBS} long/hor	hours	10/8	-	4.4/2.0	-
Synchr. Rad Power	MW	-	6.5	-	10
Bunch Length	cm	7	0.3	3.5	0.3
Luminosity	10 ³⁴ cm ⁻² s ⁻¹	0.	29	1.21	

COOL'17

Thomas Jefferson National Accelerator Facility

		No Hadro	n Cooling	Strong Hadro	on Cooling	
Parameter	Units	Protons	Electrons	Protons	Electrons	
Center of Mass Energy	GeV	10	00	10	0	
Beam Energy	GeV	275	10	275	10	High bunch
Particles/bunch	10 ¹⁰	11.6	31	5.6	15.1	frequency
Beam Current	mA	456	1253	920	2489	1e+35
Number of Bunches		33	30	132	20 🖌	
Hor. Emittance	nm	17.6	24.4	8.3	24.4	
Vertical Emittance	nm	6.76	3.5	3.1	1.7	Administrative
β _{x*}	cm	94	62	47	16	Elimited 10 MW
β _y *	cm	4.2	7.3	2.1	3.7	
σ _x '*	mrad	0.137	0.2	0.13	0.39	· E 1e+33
σ,'*	mrad	0.401	0.22	0.38	0.21	2
Beam-Beam ξ _x		0.014	0.084	0.012	0.047	With cooling
Beam-Beam ξ _y		0.0048	0.075	0.0043	0.084	1e+32 / / / / / / / / / / / / / / / /
τ_{IBS} long/hor	hours	10/8	-	4.4/2.0	-	
Synchr. Rad Power	MW	-	6.5	-	10	
Bunch Length	cm	7	0.3	3.5	0.3	
Luminosity	10 ³⁴ cm ⁻² s ⁻¹	0.	29	1.2	21	

COOL'17

Thomas Jefferson National Accelerator Facility

		No Hadro	n Cooling	Strong Hadro	on Cooling	
Parameter	Units	Protons	Electrons	Protons	Electrons	
Center of Mass Energy	GeV	10	00	10	0	
Beam Energy	GeV	275	10	275	10	High bunch
Particles/bunch	10 ¹⁰	11.6	31	5.6	15.1	frequency
Beam Current	mA	456	1253	920	2489	1e+35
Number of Bunches		33	30	132	20 🖌	
Hor. Emittance	nm	17.6	24.4	8.3	24.4	
Vertical Emittance	nm	6.76	3.5	3.1	1.7	Administrative
β _{x*}	cm	94	62	47	16	E limited
β _y *	cm	4.2	7.3	2.1	3.7	
σ _x '*	mrad	0.137	0.2	0.13	0.39	e 1e+33 -
σ,'*	mrad	0.401	0.22	0.38	0.21	⊇
Beam-Beam ξ _x		0.014	0.084	0.012	0.047	With cooling
Beam-Beam ξ _y		0.0048	0.075	0.0043	0.084	1e+32
τ _{IBS} long/hor	hours	10/8	-	4.4/2.0	-	
Synchr. Rad Power	MW	-	6.5	-	10	
Bunch Length	cm	7	0.3	3.5	0.3	
Luminosity	10 ³⁴ cm ⁻² s ⁻¹	0.1	29	1.2	21	Cooling could boost luminosity by 4 times

Thomas Jefferson National Accelerator Facility

Jefferson Lab

COOL'17

eRHIC Full Energy Electron Injector

eRHIC needs a 18 GeV injector for full energy injection into the storage ring

Booster design approach

Jefferson Lab

- Under study: rapid cycling synchrotron (RCS) (Cost effective)
- Main challenge: preserving electron polarization during acceleration
- Idea: RCS with highly symmetric arcs connected by lattice with unity transport

COOL'17

SRF linac design approach (fall back)

- 3 GeV SRF linac, acc. gradient: 25 MV/m rep Rate 1 Hz, single bunch 50 nC
- Six passes of the linac reaching 18 GeV
- Space challenge: fit 5 recirculation beam line inside the tunnel together with 2 collider rings
- High cost: need 120 m of active structure at ~\$(1-1.5)M/m, plus \$250M for 5 return loops. (mitigation: FFAG return paths)

Thomas Jefferson National Accelerator Facility

New Electron Storage Ring for eRHIC

- Average beam current up to 2.7 A: not unprecedented (KEK-B, Super-B),
- Has 330 bunches, high bunch charge (>10x of KEK-B), beam heating more challenging (1320 bunches/high rep rate bring luminosity above 10³⁴ cm⁻² s⁻¹)
- Total synchrotron radiation power limited to **10 MW** (30 single cell 560 MHz SC cavities
- Peak radiation linear density < 6 kW/m → less than KEK-B, ok with Cu beam pipe
- Strong electron Beam-Beam effects require strong radiation damping
- Coupled Bunch instability: need active damper

COOL'17

Jefferson Lab

Resistive Wall Instability ok, fast Ion instability growth time manageable

Outline

- Introduction
- BNL eRHIC Design
- JLab JLEIC Design
- Outlook of US EIC Project
- eRHIC Beam Cooling
- JLEIC Beam Cooling

COOL'17

- Additional topics: Experiment, Simulations and Advanced Concepts
- Summary

Jefferson Lab

JLEIC Achieved Design Goals

Energy

- Full coverage of CM energy from **15** to **65** GeV
- Electrons 3-10 GeV, protons up to 100 GeV, ions up to 40 GeV/u

lon species

- Polarized light ions: **p**, **d**, ³He, and possibly Li
- Un-polarized light to heavy ions up to A above 200 (Au, Pb)

Support 2 detectors

• Full acceptance capability is critical for the primary detector

Luminosity

- 10³³ to 10³⁴ /cm²s per IP in a *broad* CM energy range,
- Highest luminosity at CM energy around 45 GeV

Polarization

Jefferson Lab

- At IP: longitudinal for both beams, transverse for ions only
- All polarizations >70%

COOL'17

Upgradable to higher CM energy/luminosity possible

14 GeV electron, 400 GeV proton, and 160 GeV/u ion → ~150 GeV CM

JLEIC Achieved Design Goals

Energy

- Full coverage of CM energy from **15** to **65** GeV
- Electrons 3-10 GeV, protons up to 100 GeV, ions up to 40 GeV/u

lon species

- Polarized light ions: p, d, ³He, and possibly Li
- Un-polarized light to heavy ions up to A above 200 (Au, Pb)

Support 2 detectors

• Full acceptance capability is critical for the primary detector

Luminosity

- 10³³ to 10³⁴ /cm²s per IP in a *broad* CM energy range,
- Highest luminosity at CM energy around 45 GeV

Polarization

Jefferson Lab

- At IP: longitudinal for both beams, transverse for ions only
- All polarizations >70%

COOL'17

Upgradable to higher CM energy/luminosity possible

14 GeV electron, 400 GeV proton, and 160 GeV/u ion → ~150 GeV CM

Design goals consistent with the EIC White Paper requirements

JLEIC Layout and On JLab Site Map

Electron complex

- CEBAF as a full energy injector
- Collider ring

Ion complex

- Ion source/Linac
- Booster (8 GeV)
- Collider ring

IP/detectors

Two, full acceptance

27

Hori. crab crossing

Polarization

Figure-8 shape

Jefferson Lab

COOL'17

209.075

Thomas Jefferson National

Strategy for Achieving High Performance

High Luminosity

Jefferson Lab

 Based on <u>high bunch repetition rate CW</u> <u>colliding beams</u>

- A standard approach for lepton colliders (KEK-B reached > 2x10³⁴ /cm²/s)
- JLEIC based on CEBAF, its beam has a bunch rep-rape <u>already</u> up to 1.5 GHz
- JLEIC *Green field* ion complex can be designed to deliver high bunch rep rate

COOL'17

High Polarization w/ Figure-8

All rings are in a figure-8 shape → critical advantages for both beams

- Spin precessions in the left & right parts of the ring are <u>exactly cancelled</u>
- Net spin precession (*spin tune*) is zero, thus <u>energy independent</u>
- Spin can be <u>controlled/stabilized</u> by small solenoids or other compact spin rotators
- Only practical way for accelerating/storing polarized deuteron beam
- An opportunity for a *Green Field* design

CM energy	GeV	21.9 (low)		44.7 (medium)		63.3 (high)		
		р	е	р	е	р	е	
Beam energy	GeV	40	3	100	5	100	10	
Collision frequency	MHz	4	176	4	476		476/4=119	
Particles per bunch	10 ¹⁰	0.98	3.7	0.98	3.7	3.9	3.7	
Beam current	А	0.75	2.8	0.75	2.8	0.75	0.71	
Polarization	%	80	80	80	80	80	75	
Bunch length, RMS	cm	3	1	1	1	2.2	1	
Norm. emitt., hor./vert.	μm	0.3/0.3	24/24	0.5/0.1	54/10.8	0.9/0.18	432/86.4	
Horizontal & vertical β^*	cm	8/8	13.5/13.5	6/1.2	5.1/1	10.5/2.1	4/0.8	
Vert. beam-beam		0.015	0.092	0.015	0.068	0.008	0.034	
Laslett tune-shift		0.06	7x10 ⁻⁴	0.055	6x10 ⁻⁴	0.056	7x10 ⁻⁵	
Luminosity/IP, w/HG, 10 ³³	cm ⁻² s ⁻¹		2.5	2	1.4	5.9		

CM energy	GeV	21.9 (low)		44.7 (medium)		63.3 (high)		
		р	е	р	е	р	е	
Beam energy	GeV	40	3	100	5	100	10	
Collision frequency	MHz	4	176	4	476		476/4=119	
Particles per bunch	10 ¹⁰	0.98	3.7	0.98	3.7	3.9	3.7	
Beam current	А	0.75	2.8	0.75	2.8	0.75	0.71	
Polarization	%	80	80	80	80	80	75	
Bunch length, RMS	cm	3	1	1	1	2.2	1	
Norm. emitt., hor./vert.	μm	0.3/0.3	24/24	0.5/0.1	54/10.8	0.9/0.18	432/86.4	
Horizontal & vertical β^*	cm	8/8	13.5/13.5	6/1.2	5.1/1	10.5/2.1	4/0.8	
Vert. beam-beam		0.015	0.092	0.015	0.068	0.008	0.034	
Laslett tune-shift		0.06	7x10 ⁻⁴	0.055	6x10 ⁻⁴	0.056	7x10 ⁻⁵	
Luminosity/IP, w/HG, 10 ³³	cm ⁻² s ⁻¹		2.5	21.4		5.9		

CM energy	GeV	21.9 (low)		44.7 (medium)		63.3 (high)		
		р	е	р	е	р	е	
Beam energy	GeV	40	3	100	5	100	10	
Collision frequency	MHz	4	176	4	476		476/4=119	
Particles per bunch	10 ¹⁰	0.98	3.7	0.98	3.7	3.9	3.7	
Beam current	А	0.75	2.8	0.75	2.8	0.75	0.71	
Polarization	%	80	80	80	80	80	75	
Bunch length, RMS	cm	3	1	1	1	2.2	1	
Norm. emitt., hor./vert.	μm	0.3/0.3	24/24	0.5/0.1	54/10.8	0.9/0.18	432/86.4	
Horizontal & vertical β^*	cm	8/8	13.5/13.5	6/1.2	5.1/1	10.5/2.1	4/0.8	
Vert. beam-beam		0.015	0.092	0.015	0.068	0.008	0.034	
Laslett tune-shift		0.06	7x10 ⁻⁴	0.055	6x10 ⁻⁴	0.056	7x10 ⁻⁵	
Luminosity/IP, w/HG, 10 ³³	cm ⁻² s ⁻¹		2.5	2	1.4	5.9		

CM energy	GeV	21.9 (low)		44.7 (medium)		63.3 (high)		
		р	е	р	е	р	е	
Beam energy	GeV	40	3	100	5	100	10	
Collision frequency	MHz	4	176	4	476		476/4=119	
Particles per bunch	10 ¹⁰	0.98	3.7	0.98	3.7	3.9	3.7	
Beam current	А	0.75	2.8	0.75	2.8	0.75	0.71	
Polarization	%	80	80	80	80	80	75	
Bunch length, RMS	cm	3	1	1	1	2.2	1	
Norm. emitt., hor./vert.	μm	0.3/0.3	24/24	0.5/0.1	54/10.8	0.9/0.18	432/86.4	
Horizontal & vertical β^*	cm	8/8	13.5/13.5	6/1.2	5.1/1	10.5/2.1	4/0.8	
Vert. beam-beam		0.015	0.092	0.015	0.068	0.008	0.034	
Laslett tune-shift		0.06	7x10 ⁻⁴	0.055	6x10 ⁻⁴	0.056	7x10 ⁻⁵	
Luminosity/IP, w/HG, 10 ³³	cm ⁻² s ⁻¹		2.5	21.4		5.9		

A New Ion Complex for JLEIC

JLEIC Collider Rings

Electron ring w/ major machine components

• 12GeV CEBAF as a full energy (polarized) injector · Capability of top-off injection or continuous injection

Ion ring w/ major machine components

cooling ? XOR Elect Arc, 261.7° * = 155.5 m **Future** 81.7° 2nd IP ions IP

COOL'17

Jefferson Lab

- Two rings w/ same footprint, stack vertically
- Having a *horizontal crab crossing* at IPs
- Supports two IPs and fit to the JLab site
- Beamline/optics design completed (including low- β insertion, chromatic compensation, etc.)

• *Ion magnet field* determines CM energy range

		р	е	
Circumference	m	2	154	
Crossing angle	deg	81.7		
Lattice		FODO	FODO	
Dipole & quad	m	8 & 0.8	5.4 & 0.45	
Cell length	m	22.8 15.2		
Max. dipole field	Т	3	~1.5	
SR power density	kW/m	10		
Transition γ_{tr}		12.5	21.6	

34

Super-ferric magnets (3 T)

Thomas Jefferson National Accelerator Facility

Super-Ferric Magnets for Ion Rings

- Technology developed long ago (~SSC era)
- Adopted for FAIR SIS100 ring & NICA (1.8 T)
- Advantages
 - Higher fields (than warm magnets)
 - Fast ramp rate
 - Cost efficient
- JLEIC adopted it for booster/collider ring
 - Up to 3 T
 - Fast ramp (1 T/s) for booster ring magnets

COOL'17

Cable-in-conduit conductor

Prototype winding @Texas A&M Univ.

Jefferson Lab

Cable-in-conduit

Thomas Jefferson National Accelerator Facility

Super-Ferric Magnets for Ion Rings

- Technology developed long ago (~SSC era)
- Adopted for FAIR SIS100 ring & NICA (1.8 T)
- Advantages
 - Higher fields (than warm magnets)
 - Fast ramp rate
 - Cost efficient
- JLEIC adopted it for booster/co
 - Up to 3 T
 - Fast ramp (1 T/s) for booster ring magnets
 - Cable-in-conduit conductor

Jefferson Lab

Thomas Jefferson National Accelerator Facility

uclotron type cable and c

hal radiation shield

Prof. I. Meshkov first suggested superferric magnets for JLEIC during his 2013 visit to JLab. *Thank you, Igor!*

@Texas A&M Univ.

36

COOL'17

Outline

- Introduction
- BNL eRHIC Design
- JLab JLEIC Design
- Outlook of US EIC Project
- eRHIC Beam Cooling
- JLEIC Beam Cooling

COOL'17

- Additional topics: Experiment, Simulations and Advanced Concepts
- Summary

Jefferson Lab

US EIC Luminosity vs. CM Energy

COOL'17

US NSAC Long Range Plan (LRP)

- NSAC (Nuclear Science Advisory Committee) is commissioned by the US Department of Energy (DOE) and the National Science Foundation (NSF). (Presently 19 members, all leading nuclear and accelerator scientists)
- NSAC provides advices on assessment and prioritization of the national program for basic nuclear science research.
- Every 6 to 8 years, NSAC produces a Long Range Plan (LRP), with 3 to 5 recommendations, basically it is a roadmap for large nuclear science facilities in US for the next 10 years
- LRP 1979, 1983, 1989, 1996, 2002, 2007, 2015

To be selected as one recommendation in *LRP 2015* is a *Necessary* however *Not Sufficient* Step toward the Final Construction of An Electron-Ion Collider in US

COOL'17

Thomas Jefferson National Accelerator Facility

US NSAC Long Range Plan (LRP)

- NSAC (Nuclear Science Advisory Committee) is committee Department of Energy (DOE) and the National Science (Presently 19 members, all leading nuclear and accelerate
- NSAC provides advices on assessment and prioritization program for basic nuclear science research.
- Every 6 to 8 years, NSAC produces a Long Range Pla recommendations, basically it is a roadmap for large facilities in US for the next 10 years
- LRP 1979, 1983, 1989, 1996, 2002, 2007, 2015

COOL'17

NSAC LRP 2015

Jefferson Lab

 We recommend a high-energy high-luminosity polarized Electron-Ion Collider for new facility construction following the completion of FRIB

for NUCLEAR SCIENCE

US NSAC Long Range Plan (LRP)

- NSAC (Nuclear Science Advisory Committee) is committee in the US Department of Energy (DOE) and the National Science (Presently 19 members, all leading nuclear and accelerate
- NSAC provides advices on assessment and prioritization program for basic nuclear science research.
- Every 6 to 8 years, NSAC produces a Long Range Pla recommendations, basically it is a roadmap for large facilities in US for the next 10 years
- LRP 1979, 1983, 1989, 1996, 2002, 2007, 2015

COOL'17

NSAC LRP 2015

Jefferson Lab

 We recommend a high-energy high-luminosity polarized Electron-Ion Collider for new facility construction following the completion of FRIB

Last Step of the process for approval of EIC: National Academy of Science Review (*in progress*)

Released

Oct. 15, 2015

The 2015

LONG RANGE PLAN

for NUCLEAR SCIENCE

EIC Cooling Requirement and Impact on Luminosity Performance

- EIC science demands luminosity above 10³³ /cm² s (~100x higher than the final HERA luminosity).
 Some EIC measurements needs even higher luminosities, at or above ~10³⁴ /cm²s
- To reach >10³⁴/cm²s, the ion emittance must achieve a reduction up to *an order of magnitude*
- Role of cooling: reduction of emittance, maintaining emittance (suppressing IBS)
- It is equally challenging to maintain small emittance at medium energy (30 GeV to 275 GeV): small emittance → small beam size → high intensity → strong IBS → fast emittance growth

Jefferson Lab

COOL'17

Outline

- Introduction
- BNL eRHIC Design
- JLab JLEIC Design
- Outlook of US EIC Project
- eRHIC Beam Cooling
- JLEIC Beam Cooling

COOL'17

- Additional topics: Experiment, Simulations and Advanced Concepts
- Summary

Jefferson Lab

eRHIC Strong Beam Cooling

eRHIC linac-ring design (the previous version of its baseline)

- Demands very small emittance (~0.27 mm mrad at 250 GeV) in both horiz. & vert. dimensions
- Coherent-electron-Cooling was chosen for this task (reducing and maintaining emittance)

eRHIC linacring-ring design (the present baseline)

- The requirement of emittance reduction (2.4 and 0.9 mm mrad at 275 GeV) is less demanding but is still challenging
- Present baseline is still Coherent-electron-Cooling (may be an option of upgrade)
- But will consider alternative schemes as well
- **CeC** is a novel concept proposed by Ya. Derbenev, further developed by V. Litvinenko/Derbenev
- Fundamentally a *stochastic cooling*, however, using high-gain FEL for amplification → much wide frequency range → orders of magnitude improvement in cooling

CeC Proof-of-Principle Experiment

- DOE NP R&D project aiming for demonstration of CeC technique is in progress since 2012
- All equipment and infrastructure had been installed into RHIC's IP2, including 20 MeV SRF linac, helical wigglers for FEL amplifier and beam transported to low energy dump
- 1st beam from SRF gun (3 nC/bunch, 1.7 MeV) on 6/24/2015; exceeds performance of all operating CW electron guns
- P-o-P demo with 40 GeV/n Au scheduled during RHIC Run 16&17. Cooling studies planned for 18
- Improvements after first commissioning in 2016 implemented, recommissioning in progress

Parameter	Value	Status
Species in RHIC	Au ⁺⁷⁹ ions, 40 GeV/u	\checkmark
Relativistic factor	42.96	\checkmark
Particles/bucket	$10^8 - 10^9$	\checkmark
Electron energy	21.95 MeV	10 MeV
Charge per e-bunch	0.5-5 nC	✓ (> 3.5 nC)
Rep-rate	78.17 kHz	5 kHz*
e-beam current	0.39 mA	Few µA
Electron beam power	8.6 kW	< 10 W

Alternate Approaches Under Consideration for eRHIC

• Electron cooling is a fall back option for ring-ring eRHIC

Jefferson Lab

COOL'17

- Magnetized electron cooling at 250 GeV is also challenging
- Non-magnetized e-cooler is under construction for low energy RHIC operation (LEreC)

Other Concepts Under Consideration for eRHIC

COOL'17

Jefferson Lab

eRHIC Cooling R&D Plan

- CeC PoP experiment in BNL. Potential upgrade for micro-bunching cooling studies.
- R&D for Amp-scale current electron cooler on the basis of recirculator in JLab
- Proposed optical stochastic cooling experiment in FNAL (on IOTA facility)
- Multi-pass high-current ERL developments (CBETA facility in Cornell, ...)

47

Thomas Jefferson National Accelerator Facility

Outline

- Introduction
- BNL eRHIC Design
- JLab JLEIC Design
- Outlook of US EIC Project
- eRHIC Beam Cooling
- JLEIC Beam Cooling

COOL'17

- Additional topics: Experiment, Simulations and Advanced Concepts
- Summary

Jefferson Lab

Multi-Step Cooling for JLEIC High Luminosity

• Achieving very small emittance (~10x reduction) & very short bunch length ~1 cm (with SRF)

Pre-cool when energy is low

- Suppressing IBS induced emittance degradation
- high cooling efficiency at low energy & small emittance

Ion Beam Formation Cycles

Collider ring: 2252.8m, booster: 281.6m

- 1. (Eject used beam, cycle the ring magnets)
- 2. Multi-turn injection of polarized proton to booster
- 3. Capture beam into a bucket (~200 m bunch length)
- 4. Ramp to ~8 GeV
- 5. Compress the bunch length to 56 m
- 6. Bucket-to-bucket transfer the long bunch into collider ring with DC cooling
- Repeat step 2-6 for 26 times, each cycle ~20 s, total ~10 min
- 8. DC cooling to reduce emittance to design values
- 9. Ramp to collision energy, perform binary bunch splitting up to **7** times to harmonic # Nh=3584
- 10. Start high energy cooling to preserve emittance

COOL'17

11. Start collision program

Jefferson Lab

Ion Beam Formation Cycles

Collider ring: 2252.8m, booster: 281.6m

DC Cooler: Within State-of-Art

Low energy DC cooler@IMP, China

Thomas Jefferson National Accelerator Facility

JSA

JLEIC Bunched Beam Electron Cooler

Requirements of cooling beam

- Beam: 1.5 A CW at 476 MHz rep rate
- Energy: up to 55 MeV
- Beam power: 81 MW

Technical approaches

- Magnetized cooling (magnetized gun)
- SRF linac
- Energy recovery
- Circulator ring
- (power management) (current management)

(bunched beam)

Electron energy	MeV	20 to 55
Bunch charge	nC	3.2
Turns in circulator ring	turn	~11
Current in CCR/ERL	А	1.5/0.14
Bunch rep rate in CCR/ERL	MHz	476 / 43.3
Cooling section length	m	4x15
RMS Bunch length	cm	3
Energy spread	10-4	3
Cooling solenoid field	Т	1

JLEIC Bunched Beam Electron Cooler

Requirements of cooling beam

- Beam: 1.5 A CW at 476 MHz rep rate
- Energy: up to 55 MeV
- Beam power: 81 MW

Technical approaches

- Magnetized cooling (magnetized gun)
- SRF linac
- Energy recovery
- Circulator ring
- (power management) (current management)

(bunched beam)

Electron energy	MeV	20 to 55
Bunch charge	nC	3.2
Turns in circulator ring	turn	~11
Current in CCR/ERL	А	1.5/0.14
Bunch rep rate in CCR/ERL	MHz	476 / 43.3
Cooling section length	m	4x15
RMS Bunch length	cm	3
Energy spread	10-4	3
Cooling solenoid field	Т	1

- ERL cooler and DC cooler share a solenoid (no show-stopper found)
- Lower cost, saving beam line space

COOL'17

• Same solenoid field (1 T)

Jefferson Lab

- ERL cooler and DC cooler share a solenoid (no show-stopper found)
- Lower cost, saving beam line space

COOL'17

• Same solenoid field (1 T)

Jefferson Lab

- ERL cooler and DC cooler share a solenoid (*no show-stopper found*)
- Lower cost, saving beam line space

COOL'17

• Same solenoid field (1 T)

Jefferson Lab

- ERL cooler and DC cooler share a solenoid (no show-stopper found)
- Lower cost, saving beam line space
- Same solenoid field (1 T)

Outline

- Introduction
- BNL eRHIC Design
- JLab JLEIC Design
- Outlook of US EIC Project
- eRHIC Beam Cooling
- JLEIC Beam Cooling

COOL'17

- Additional topics: Experiment, Simulations and Advanced Concepts
- Summary

Jefferson Lab

JSPEC: New Cooling Simulation Code

Goals

- Fulfill the specific needs for JLEIC electron cooling scheme
- Applicable to different cooling flavors: DC and bunched beam
- Flexibility, higher efficiency (adaptive to the multi-core platform)

Formulas and models implemented

- IBS: Martini model (no vertical dispersion lattice)
- Friction force: Parkhomchuk formula (magnetized cooling)
- Cooling rate: single particle model, Monte Carlo model
- Cooling dynamics: Four-step procedure

Supported by JLab LDRD (two years)

Source codes/tutorial online: https://github.com/zhanghe9 704/electroncooling

Electron Cooling Simulations

DC cooling:

1.0

0.8

0.6

0.4

0.2

 $0.0 \stackrel{\square}{_{0}}$

Jefferson Lab

20

smittance (π ·mm·mrad)

Proton: kinetic energy 7.9 GeV, current 0.75 A DC electron beam current: 3 A Cooler length: 30 m, B field: 1 T

Bunched beam cooling

60

t (min)

COOL'17

80

40

Bunched beam cooling:

Proton: kinetic energy 30 to 100 GeV, current 0.75 A Bunch repetition rate: 476 MHz Beam current: 0.9 to 1.5 A, bunch charge: 2 to 3.2 nC Cooler length: 2x30 m, B field: 1 T

40 GeV

100

Electron: 0.9 A

Proton: 0.75 A

New Approach to the Semi-Analytic Calculation of Magnetized Friction is Under Development

D. Bruhwiler and S. Webb, "New algorithm for dynamical friction of ions in a magnetized electron beam," in *AIP Conf. Proc.* **1812**, 050006 (2017); <u>http://aip.scitation.org/doi/abs/10.1063/1.4975867</u>

Base: The momentum exchange between a drifting ion and a magnetized electron is calculated approximately using Hamiltonian formalism, the Coulomb interaction H_c is the perturbation:

$$\begin{split} H(\vec{x}_{ion}, \vec{p}_{ion}, \vec{x}_{e}, \vec{p}_{e}) &= H_{0}(\vec{p}_{ion}, y_{e}, \vec{p}_{e}) + H_{C}(\vec{x}_{ion}, \vec{x}_{e}) \\ H_{0}(\vec{p}_{ion}, y_{e}, \vec{p}_{e}) &= \frac{1}{2m_{ion}} (p_{ion,x}^{2} + p_{ion,y}^{2} + p_{ion,z}^{2}) + \frac{1}{2m_{e}} [(p_{e,x} + eB_{0}y_{e})^{2} + p_{e,y}^{2} + p_{e,z}^{2}] \\ H_{C}(\vec{x}_{ion}, \vec{x}_{e}) &= \frac{-Ze^{2}}{4\pi\varepsilon_{0}} / \sqrt{(x_{ion} - x_{e})^{2} + (y_{ion} - y_{e})^{2} + (z_{ion} - z_{e})^{2}} \end{split}$$

Plan

Jeff

- **1. Near term**: Numerically integrate over Gaussian electron distributions, for a variety of ion initial conditions. Compare the results with Derbenev & Skrinsky, Parkhomchuk (JLEIC parameters)
- Mid-term: Apply directly to simulated electron distributions. Monte-Carlo integration over Dp_{ion} yields friction force for arbitrary distributions.
- **3.** Longer-term: Generalize the calculation to include the effects of space charge forces and magnetic field errors, which reduce the friction force.

$$H\left(\vec{x}_{ion}, \vec{p}_{ion}, \vec{x}_{e}, \vec{p}_{e}\right) = H_{0}\left(\vec{p}_{ion}, y_{e}, \vec{p}_{e}\right) + H_{C}\left(\vec{x}_{ion}, \vec{x}_{e}\right) + H_{space - charge}\left(\vec{x}_{ion}, \vec{x}_{e}\right) + H_{solenoid - field - errors}\left(\vec{x}_{ion}, \vec{x}_{e}, ?\right)$$

erson Lab COOL'17
Thomas Jeffersor Courtesy D. Bruhilwer (Radiasoft)

Bunched Beam Cooling Experiment at IMP

- All electron cooling to date achieved using a DC electron beam
- Cooling by a bunched e-beam is one critical R&D item for JLEIC
- Proof-of-Principle Experiment: utilizing an existing DC cooler, modulating grid voltage of a thermionic gun to generate a pulsed electron beam (as short as ~100 ns)

A collaboration of Jlab and IMP (China)

IMP: L. Mao (PI), H. Zhao, M. Tang, J. Li, X. Ma, X Yang, J. Yang, H. Zhao Jlab: Y. Zhang (co-PI), A. Hutton, K. Jordan, T. Powers, R. Rimmer, M. Spata, H. Wang, S. Wang, H. Zhang

COOL'17

Jefferson Lab

- May 2016, 1st experiment: bunched beam cooling was observed
- Nov. 2016, machine development (improving beam diagnostics)
- April 2017, 3rd experiment: more measurements (under analysis)

Bunched Beam Cooling Experiment at IMP

- All electron cooling to date achieved using a DC electron beam
- Cooling by a bunched e-beam is one critical R&D item for JLEIC
- Proof-of-Principle Experiment: utilizing an existing DC cooler, modulating grid voltage of a thermionic gun to generate a pulsed electron beam (as short as ~100 ns)

A collaboration of Jlab and IMP (China)

IMP: L. Mao (PI), H. Zhao, M. Tang, J. Li, X. Ma, X Yang, J. Yang, H. Zhao Jlab: Y. Zhang (co-PI), A. Hutton, K. Jordan, T. Powers, R. Rimmer, M. Spata, H. Wang, S. Wang, H. Zhang

COOL'17

Jefferson Lab

- May 2016, 1st experiment: bunched beam cooling was observed
- Nov. 2016, machine development (improving beam diagnostics)
- April 2017, 3rd experiment: more measurements (under analysis)

First Results of Bunched Beam Cooling

COOL'17

Jefferson Lab

lons		12C6+
Ring circumference	m	161
lon energy	MeV/u	7.0
Revolution period/freq	us/Hz	4.4/227
Particle number		10 ⁸
Initial ion bunch length	ns	700 or DC
Electron energy	keV	3.8
E-beam avg. current	mA	<50
E-beam pulse width	ns	70 – 3500
E-beam radius	cm	2.5

Thomas Jefferson National Accelerator Facility

L. Mao poster

中国科学院近代物理研究所

Jefferson Lab

Jefferson Lab

COOL'17

H. Zhao poster

SIMULATION OF LOW ENERGY ION BEAM COOLING WITH PULSED ELECTRON BEAM ON CSRM

He Zhao¹, Lijun, Mao[†], Jie Li, Meitang Tang, Xiaodong Yang, Xiaoming Ma, Jiancheng Yang

¹University of Chinese Academy of Sciences, Beijing, China

Abstract

Single pulsed e-beam

barrier bucket theory.

Energy

Been current

initial emittence

Length of cooler Belatron tune

E-been current

E-been redux

E-been temperatu

pulsed width Rising/felling time

spread can be figured out.

Ring circumference

Initial momentum spread FMS

Bets value in cooling section

Magnetic field in cooling section

The pulsed electr on beam can be applied to the beam cooling on high energy heavy ions and the research on ion-electron interaction in the future. In th ed e-beam cooling effects on coasting and bunched ion beam by simulation code which is based on the theory of electron coo on, a rectangular distribution of electron beam was applied to 7 MeV/u 12C⁴⁺ ion beam on CSRm. It is found that the coasting ion bear ed by the pulsed e-beam and the rising and failing region of electron beam current play an imp ant role for the bunching effect, and similar o for the bunched ion beam, in addition, the analyses of these pher

Coasting Ion Beam Cooling

Based on simulation results on CSRm, the coasting beam is bunched by

the pulsed electron beam and almost all of the particles are bunched into

the region where have electrons. The electric field caused by the rising

and failing of electron beam plays a crucial role in the bunching process.

The kick voltage on ions due to the square wave electric field in

longitudinal is about 230V. The bunch process can be explained by the

7 Me 1/1

0.3/0.2 pi mm.m

2mA

161 m

3.4 m 3.632.61

10/10 m

30 mA

0.2/1e-4 eV

1000 Ga

3 cm

2 us 10 m

Similar to synchrotron motion in RF, the oscillation caused by the potential

field is circle in longitudinal phase space. The period time of the bunched

beam with RMS momentum spread dpip includes two parts: cooling section and e-beam edge section. The distribution the period time is

shown in below and there exist sidebands which is caused by the

20-4

Multi pulsed e-beam

Coasting Ion Beam Cooling

Bunched Ion Beam Cooling

Long pulsed e-beam

> The e-beam pulse width is longer than the initial RMS bunch length of ion beam before cooling with V_{RF}=1 KV and $\Phi_0=0$ Because of the synchrotron motion, the cooling rate almost have no difference for long pulsed e-beam

Short pulsed e-beam

The e-beam pulse width is close to the final bunch length of ion beam after cooling. Together with the RF voltage, the kick voltage caused by the pulsed electron beam will change the Separatrix orbit in phase space like the figure shows, which is the result of one particle tracking in i-

66

Gaussian distribution of momentum spread. Based on the sidebands in ongitudinal. The bunched ion beam india Particle Tracking frequency domain, the cooling process and the RMS beam momentum will be divided into two bunches by the multi e-beam. If there is an phase shift between the RF and pulsed e-beam, the final distribution of bunch show a different phenolmenon. It is main determined by the kick voltage because the RF voltage is small in that region.

This work was supported by the National Natural Science Foundation of China (Nos. 11575264, 11375245, 11475235) and the Hundred Talents Project of the Chinese Acad

Thomas Jefferson National Accelerator Facility

Electron Cooling Theory

Full translation of Ya. Derbenve's D.Sci. Thesis

arxiv.org/abs/1703.09735

THEORY OF ELECTRON COOLING

Yaroslav Derbenev*

Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA

^{*}Translated from Russian by V.S. Morozov, Jefferson Lab, VA 23606, USA Translation supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177.

Table of Contents

Introduction

Jefferson Lab

- I. General Properties of Electron Cooling
- II. Interaction of Heavy Particles With Magnetized Electron Beam
- III. Effects of Non-Uniformity and Non-Stationary When Cooling By Magnetized Beam
- IV. Collective Stability of Cooled Beam

COOL'17

V. Intrabeam Scattering

Summary

- NSAC Long Range Plan (2015) recommends an EIC as a future US accelerator facility for the OCD frontier, science cases were fully developed and very strong
- Two electron-ion colliders, eRHIC and JLEIC, have been proposed in BNL and JLab respectively for future nuclear physics research
- Both eRHIC and JLEIC accelerator designs aim for high performance, orders of magnitude better than HERA, to meet science needs
- Cooling is essential for both eRHIC and JLEIC to reach ultra high luminosity (above 10³⁴/cm²/s)
- There are clear and promising cooling concepts for eRHIC and JLEIC, and much progress has been made in technical designs and technology R&D
- However, there are still lots of work need to be done.

COOL'17

Jefferson Lab

https://www.bnl.gov/eiccm2017/

COOL'17

Thomas Jefferson National Accelerator Facility

Acknowledgement

To prepare this presentations, I borrowed slides for eRHIC from several BNL colleagues including Christoph Monteg, Vadim Ptitsyn and Ferdinand Willeke. I want to thank these colleagues

I want to thank IMP colleagues for collaboration of the bunched beam electron cooling experiment

We also want to thank the Jefferson Lab EIC team and many collaborators.

Jefferson Lab

JLEIC Collaboration

S. Benson, A. Bogacz, P. Brindza, A. Camsonne, E. Daly, Ya. Derbenev, M. Diefenthaler, D. Douglas, R. Ent, Y. Furletova, D. Gaskell, R. Geng, J. Grames, J. Guo, F. Hanna, L. Harwood, T. Hiatt, H. Huang, A. Hutton, K. Jordan, A. Kimber, G. Krafft, R. Li, F. Lin, F. Marhauser, R. McKeown, T. Michalski, V. Morozov, E. Nissen, H. Park, F. Pilat, M. Poelker, T. Powers, R. Rimmer, Y. Roblin, T. Satogata, M. Spata, R. Suleiman, A. Sy, C. Tennant, H. Wang, S. Wang, G. Wei, C. Weiss, R. Yoshida, H. Zhang, Y. Zhang – Jefferson Lab, VA

Y. Nosochkov, M. Sullivan, C. Tsai, M. Wang - SLAC, CA D. Barber - DESY, Germany

- S. Manikonda, B. Mustapha, U. Wienands Argonne National Laboratory, IL
- P. Ostroumov, A. Plastun , R. York Michigan State University, MI
- S. Abeyratne, B. Erdelyi Northern Illinois Univ., IL, Z. Zhao Duke Univ., NC
- J. Delayen, C. Hyde, S. De Silva, S. Sosa, B. Terzic Old Dominion Univ., VA
- J. Gerity, T. Mann, P. McIntyre, N. Pogue, A. Sattarov Texas A&M Univ., TX
- P. Nadel-Turonski, Stony Brook Univ., NY, V. Dudnikov, R. Johnson Muons, Inc., IL
- D. Bruhwiler Radiasoft, CO I. Pogorelov, G. Bell, J. Cary Tech-X Corp., CO
- A. Kondratenko, M. Kondratenko Sci. & Tech. Laboratory Zaryad, Russia
- Yu. Filatov Moscow Institute of Physics and Technology, Russia

COOL'17

Y. Huang, X. Ma, L. Mao, Y. Yuan, H. Zhao, H.W. Zhao - Institute of Modern Physics, China

