Author: Mao, R.S.
Paper Title Page
TUP05
Towards Laser Cooling of Relativistic 16O5+ Ion Beams at the CSRe  
 
  • H.B. Wang, B. Hai, Z. Huang, J. Li, X.N. Li, X. Ma, L.J. Mao, R.S. Mao, W.Q. Wen, J.X. Wu, J.C. Yang, Y.J. Yuan, D. Zhang, D. Zhao
    IMP/CAS, Lanzhou, People's Republic of China
  • M.H. Bussmann
    HZDR, Dresden, Germany
  • D.F.A. Winters
    GSI, Darmstadt, Germany
 
  Laser cooling is one of the most promising techniques to achieve high phase-space densities or even crystalline beams for relativistic heavy ion beams at storage rings [*]. In addition, precision laser spectroscopy of relevant transitions in highly charged ions can also be performed simultaneously during the laser cooling experiments [**]. In the storage ring CSRe at IMP, a new laser cooling experiment for Li-like 16O5+ ion beams is currently being prepared and will be carried out at the end of the year 2017 under the Laser-cooling Collaboration. During the experiment, a CW laser with a wavelength of 220 nm will be used to cool the 16O5+ ion beams with an energy of 280 MeV/u. The 16O5+ ion beams will be the highest charge state and highest energy ions ever used for laser cooling at the storage rings. In the experiment, the longitudinally dynamics of ultra-cold ion beams will be investigate systematically towards the transition of the space charge dominated regime. Precision laser spectroscopy of 16O5+ ions for measuring the transition energy of 2s1/2'2p1/2 and 2s1/2'2p3/2 is foreseen.
[*] U. Schramm et al., Progress in Particle and Nuclear Physics, 53 (2004) 583-677.
[**] U. Schramm et al., Hyperfine Interactions 162(1) (2005), 181-188
 
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)