

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Optical Stochastic Cooling at IOTA ring Valeri Lebedev and Alex Romanov

Fermilab

COOL-15 Workshop Sep. 28 - Oct. 2, 2015 Thomas Jefferson National Accelerator Facility Newport News, VA, USA

<u>Contents</u>

- Basics of Optical Stochastic Cooling
- Optical Stochastic Cooling at IOTA ring
 - Beam optics
 - Light optics
- Conclusions

Principles of Optical Stochastic Cooling

- OSC suggested by Zolotorev, Zholents and Mikhailichenko (1994)
- OSC obeys the same principles as the microwave stochastic cooling, but exploits the superior bandwidth of OA ~10¹³-10¹⁴ Hz

- At optimum the cooling rate of stochastic cooling for continuous beam can be estimated as: $\lambda_{\max} f_0 \approx \frac{W}{N}$ Or dimensionless damping rate: $\lambda_{\max} \approx 1/N_{sample}$
 - Potential gain in damping rates: 10³÷10⁴
- Pickup and kicker must operate at the optical frequencies (same as an optical amplifier)
 - Undulators suggested for pickups & kickers
- Slow particles do not radiate at optical frequencies
 - OSC can operate only with ultra-relativistic particles

Light

<u>Optimal Gain in OSC</u>

- Three types of stochastic cooling (microwave)
 - Transverse (differential signal is difference of signals of two sides of a pickup)
 - Longitudinal Palmer cooling (same as above)
 - Longitudinal filter cooling (signal is difference of signals from two different turns)
- Suppression of diffusion in all 3 cases zero signal for zero amplitude
- Longitudinal transient time cooling (ToF)
 - Also tested experimentally
 - No subtractions => more diffusion
 - Only method to be used at optical frequencies
- Optimal gain & max. cooling rate for ToF cooling
 - single particle cooling (∞G)
 versus multi-particle diffusion (∞G²)

$$\lambda_{\max} f_0 \approx \frac{W}{N} \xrightarrow{Bunched beam \ cooling}{rms \ size \ accounting}} \lambda_{\max} f_0 \approx \frac{2\pi^{5/2}}{n_{\sigma}^2}$$

Bandwidth, for Gaussian band: $W = 2\sqrt{\pi}\sigma_f \left(G(\omega) = G_0 \exp\left(-\omega^2/2(2\pi\sigma_f)^2\right)\right)$

$$n_{\sigma} = \frac{\left(\Delta p / p\right)_{\max}}{\sigma_{p}}, \quad W = f_{0}\left(n_{\max} - n_{\min}\right),$$

4

Gain Duration in OSC

- Optimal gain does not depend on the active time of the amplifier
 - Reduction of average cooling for the gain length shorter than the bunch length

$$\lambda_{opt} = \frac{2\pi^{5/2}}{n_{\sigma}^2} \frac{\sigma_s}{C} \frac{W}{N} \frac{\sigma_g}{2\sigma_s}, \quad \sigma_g \ll \sigma_s$$

That basically excludes optical parametric amplifiers and FELs as candidates for OA of heavy particles

Basics of OSC – Radiation from Undulator

- Radiation of ultra-relativistic particle is concentrated in $1/\gamma$ angle
- Undulator parameter: $K \equiv \gamma \theta_e = \frac{\lambda_{wgl}}{2\pi} \frac{eB_0}{mc^2}$

 $\vec{\theta}_{e}$

For K ≥ 1 the radiation is mainly radiated into higher harmonics
 Radiation wave length

$$\lambda = \frac{\lambda_{wgl}}{2\gamma^2} \begin{cases} \left(1 + \gamma^2 \left(\theta_e^2 + \theta^2\right)\right) & -helical undulato \\ \left(1 + \gamma^2 \left(\frac{1}{2}\theta_e^2 + \theta^2\right)\right) - flat undulator \end{cases}$$

Only 1st harmonic radiation interacts in the kicker undul. resonantly

Basics of OSC – Cooling Rates: Linear & Nonlinear

Partial slip factor: describes a long. particle displacement on the way from pickup to kicker with $\Delta p/p \neq 0$ & no betatron motion $\Delta s = \tilde{M}_{56} (\Delta p / p) \iff \tilde{M}_{56} = M_{51}D_1 + M_{52}D'_1 + M_{56}$

Kick strength: $\delta p / p = -\xi_0 \sin(k \Delta s) \Rightarrow \delta p / p = -\xi_0 k \Delta s$

Cooling rates:

$$\lambda_x = \frac{k\xi_0}{2} \left(M_{56} - \tilde{M}_{56} \right)$$
$$\lambda_s = \frac{k\xi_0}{2} \tilde{M}_{56}$$

$$\lambda_{x} + \lambda_{s} = \frac{k\xi_{0}}{2}M_{56}$$

$$-\frac{1}{0} + \frac{\delta p}{p} + \frac{1}{0.5}$$

$$-\frac{1}{0} + \frac{1}{1.571} + \frac{1}{3.142} + \frac{1}{4.7}$$

But cooling force depends on Δs nonlinearly

• Averaging over bet. & synchr. motions: $k\Delta s = a_x \sin(\psi_x - \psi_0) + a_p \sin(\psi_p)$

$$\lambda_{s,x}(a_x, a_p) = F_{s,x}(a_x, a_p)\lambda_{s,x}$$

$$F_x(a_x, a_p) = \frac{2}{a_x}J_0(a_p)J_1(a_x)$$

$$F_p(a_x, a_p) = \frac{2}{a_p}J_0(a_x)J_1(a_p)$$

Cooling
boundaries:
$$a_x, a_p < \mu_{01}$$
,
 $\mu_{01} \approx 2.405$

Basics of OSC – Cooling Ranges

Longitudinal displacement (sample lengthening) in pickup is

$$a_p = k \tilde{M}_{56} \left(\Delta p / p \right)$$

In the linear approximation the cooling rates do not depend on beta-functions in OSC straight

However for the horizontal betatron motion the sample lengthening on the way from pickup to kicker depends on βfunction

$$a_{x} = k \sqrt{\varepsilon \left(\beta_{p} M_{51}^{2} - 2\alpha_{p} M_{51} M_{52} + \gamma_{p} M_{52}^{2}\right)}, \quad \text{where } \varepsilon = \beta_{p} \theta^{2} - 2\alpha_{p} x \theta + \gamma_{p} x^{2}$$

where β_p , α_p are the β - and α -functions in the pickup

- Cooling requires the both lengthening amplitudes (a_x and a_p) to be smaller than $\mu_{01} \approx 2.405$
 - Sample lengthening is described by the same above equations

- Cooling chicane delays the beam by the same amount as optical amplifier + optical system
- Four rectangular dipoles
 - if no horizontal focusing => $M_{56} = \tilde{M}_{56}$ => no horizontal cooling
- Quad in the center makes M_{56} and \tilde{M}_{56} different
 - ⇒ horizontal cooling
 - Extra two quads make a triplet: more opportunities for future
- Two sextupoles at each side to correct non-linear sample lengthening
- Optical amplifier is actually located inside dipoles and quadrupole

Test of OSC in Fermilab

- Fermilab is constructing a dual purpose ring called IOTA to test:
 - Integrable optics
 - 150 MeV electrons
 - 2.5 MeV protons (pc≈70 MeV/c)

OSC Chicane Optics Optimization

Dispersion in the chicane center

- In the first approximation the orbit offset in the chicane (h), the path lengthening (Δs), the defocusing strength of Qd (Φ) and dispersion in the chicane center (D^{*}) determine the entire cooling dynamics
- Δs is set by delay in the amplifier => M_{56} (Δs = 3 mm is chosen, includes delay in lenses)
- Choose $(dD/ds)^* = 0$ => $D|_{s=\pm L_t} \approx D^*$
- $\Phi D^* h$ determines the ratio of decrements
 - Choose: $\lambda_x \approx 2\lambda_s \Rightarrow \Phi D^* h \approx 4\Delta s / 3$
- For the wave length of λ =2.2 µm and momentum spread of σ_p =1.1·10⁻⁴ \Rightarrow Cooling acceptance for longitudinal degree of freedom ($n_{\sigma p}$ =3.7)
- Thus ΦD^*h determines the ratio of cooling rates and cooling acceptance in momentum

This is the first limitation which sets the wave length to be \geq 2 μm

$$\begin{split} M_{56} &\approx 2\Delta s ,\\ \tilde{M}_{56} &\approx 2\Delta s - \Phi D^* h ,\\ \frac{\lambda_x}{\lambda_s} &= \frac{\tilde{M}_{56}}{M_{56} - \tilde{M}_{56}} \approx \frac{\Phi D^* h}{2\Delta s - \Phi D^* h} ,\\ k\sigma_p \left(\frac{\Delta p}{p}\right)_{\max} \tilde{M}_{56} < \mu_{01} \\ & \xrightarrow{n_{\sigma p} \sigma_p = \left(\frac{\Delta p}{p}\right)_{\max}} \rightarrow \\ n_{\sigma p} &\approx \frac{\mu_{01}}{\left(2\Delta s - \Phi D^* h\right) k\sigma_p} , \end{split}$$

OSC Chicane and Limitations on IOTA Optics (2)

Beta-function in the chicane center

- Behavior of the horizontal β-function determines the cooling range for horizontal degree of freedom
 - At optimum $\alpha^* = 0$
 - ⇒ Cooling acceptance:

$$\varepsilon_{\max} = \frac{\mu_{01}^{2}}{k^{2} \left(\beta_{p} M_{51}^{2} - 2\alpha_{p} M_{51} M_{52} + \gamma_{p} M_{52}^{2}\right)} \xrightarrow{\beta_{p} \approx \frac{L_{t}^{2}}{\beta^{*}}} \approx \frac{\mu_{01}^{2}}{k^{2} \Phi^{2} h^{2} \beta^{*}}$$

For known rms emittance, ε , we can rewrite it as following

$$n_{\sigma x} \equiv \sqrt{\frac{\mathcal{E}_{\max}}{\mathcal{E}}} \approx \frac{\mu_{01}}{k \Phi h \sqrt{\mathcal{E}\beta^*}} \xrightarrow{\Phi D^* h = 2\Delta s \frac{\lambda_x}{\lambda_s + \lambda_x}} \qquad n_{\sigma x} = \frac{\mu_{01}}{2k \Delta s} \left(1 + \frac{\lambda_s}{\lambda_x}\right) \sqrt{\frac{A_x^*}{\mathcal{E}}} \qquad A_x^* = \frac{D^{*2}}{\beta^*}$$

Thus the cooling range, $n_{\sigma x}$, determines the dispersion invariant A_x^* Average value of A_x in dipoles determines the equilibrium emittance.

- A_x^* is large and A_x needs to be reduced fast to get an acceptable value of the equilibrium emittance (ε)
- Getting sufficiently large cooling acceptance requires long wave length of the radiation: another reason for $\lambda \ge 2 \ \mu m$

Linear Beam Optics for Cooling Chicane

Major parameter of cooling chican	rs e	
Beam energy	100 MeV	15 - 0.5
Dipole type	Rbend	
B of dipole	3.06 kG	
L of dipole	8 cm	
Orbit offset, h	43 mm	
Delay, ∆s	3 mm	5
GdL of Qd quad	830 Gs	
β *	5.2 cm	
D _x *	60 cm	18 19 20 21 22 S [m]
Cooling rates ratio, λ_x/λ_s	1.7	BetaX BetaY DispX DispY
Basic wave length, λ	2.2 μm	
Cooling range in	±1.2.10-3	
momentum, (Ap/p) _{max}	(3.7 σ)	
Cooling range in hor.	0.31 μm	
plane, ϵ_{max} (Linear appr.)	(5.9 σ)	
Geometric acceptance	5 μ m	

Sample Lengthening on the Travel through Chicane

- Very large sample lengthening on the travel through chicane
- High accuracy of dipole field is required to prevent uncontrolled lengthening, ∆(BL)/(BL)_{dipole}<10⁻³

Sample lengthening due to momentum spread (top) and due to betatron motion (bottom)

Non-liner Sample Lengthening

Major contribution to the 2nd order lengthening comes from particle angle:

$$\Delta s_2 = \int_{-L_q/2}^{L_q/2} \frac{\theta(s)^2}{2} ds \xrightarrow{\beta^* \ll L_t} \approx \frac{1}{2} \frac{\varepsilon}{\beta^*} L_q$$

• $\beta_x^* \ll \beta_y^* \Rightarrow$ hor. betatron oscillations make much larger contribution

Dependence of normalized long. particle displacement in the kicker, $k\Delta s$, on \perp particle position in the pickup for particles located at ellipses of 1σ , 2σ , 4σ , 6σ and 8σ (referenced to equilibrium H. emittance in the absence of x-y coupling). Left and right - H. and V. betatron motions, respectively. Horizontal lines mark cooling boundaries. 15

Correction of Non-liner Sample Lengthening

Model implies perfect rectangular dipoles with rigid edge

Vertical edge focusing due to finite gap is accounted

IOTA Optics for OSC

Optics functions and dispersion invariant for IOTA half ring
 Focusing at the edges of OSC insert is adjusted to reduce A_x in the ring
 Small horizontal emittance

IOTA Optics

Main Parameters of IOTA storage ring for OSC

Circumference	40 m
Nominal beam energy	100 MeV
Bending field of main dipoles	4.8 kG
Tunes, Q_x / Q_y	5.45/3.45
Natural chromaticities, ξ_x / ξ_y	-18 / -7.4
Chromaticities with OSC sextupoles	253 / -67
Geometric acceptance	5 μ m
Dynamic acceptance*	0.15 μ m (4 σ)
RMS hor. emittance, SR, no coupling	9.1 nm
Rms momentum spread, σ_p	1.07.10-4
SR cooling times (ampl.), $(\tau_x/\tau_y/\tau_s)$	1.7/2/1.1 s
Cooling ranges* (before OSC), $n_{\sigma x}/n_{\sigma s}$	5.9 / 3.7

 Chromaticities are compensated to about zero with ring sextupoles Energy is reduced 150→100 MeV to reduce ε, σ_p
 Operation on coupling resonance reduces horizontal emittance and introduces vertical
 OSC damping

 Tunes are chosen to maximize the dynamic aperture limited by OSC and ring sextupoles

Dynamic Aperture Limitation by Sextupoles of OSC Insert

In vicinity of 3rd order resonance:

$$\tilde{x}_{b} \equiv \frac{x_{\max}\beta_{x}}{x_{0S}^{2}} \approx 25 \left| \left[\nu \right] - \frac{1}{3} \right| \iff \varepsilon_{b} \approx \frac{625x_{0S}^{4}}{\beta_{x}^{3}} \left(\left[\nu \right] - \frac{1}{3} \right)^{2}$$
where: $x_{0S}^{2} = \frac{pc}{e(SL)}$

Far from the resonance the stability boundary can be estimated from the phase space distortion

$$\tilde{x}_b \approx 3 \iff \mathcal{E}_b \approx \frac{9x_{0S}^4}{\beta_x^3}$$

- Transition happens at detuning $\Delta v \approx 0.1$
- Two sextupoles have $\triangle Q \times \approx 180$ deg.
 - Good compensation of non-linearities in vicinity of resonance (weak sext.)
 - Almost no compensation far from resonance
- First estimate of dynamic aperture used
 - phase space distortion after a pass through cooling chicane
- Then: Tunes, sextupole families, FMA and tracking

Sengle sextupole transformation

Dynamic Aperture Limitation by Sextupoles of OSC Insert(2)

Hor.(left) and vert.(right) phase spaces after 1 pass through the chicane with (bottom) and without (top) sextupole correction. Initially particles were located at ellipses of 1σ , 2σ , 4σ , 6σ and 8σ .

FMA (frequency map analysis) for dimensionless betatron amplitudes

task0SC045_1_2.as00_12

- 4σ dynamic aperture is obtained
 - further improvements are expected
- But, first, the light optics has to be better understood

<u>Undulators</u>

Radiation wavelength at zero angle	2.2 μ m
Undulator parameter, K_U	0.8
Undulator period	12.9 cm
Number of periods, m	6
Total undulator length, L_w	0.77 m
Peak magnetic field	664 G
Distance between centers of undulators	3.3 m
Energy loss per undulator per pass	22 meV
Average power per undulator for N_e =10 ⁶	26 nW
Optical system aperture (2a)	13 mm
Radiation spot size in the kicker, HWHM	0.35 mm
$\gamma \theta_{max}$	0.63

Larger \(\theta_{max}\) => larger bandwidth (

more problems
with optics

> faster cooling

Passive and Active OSC

- For $K \ll 1$ focused radiation of pickup undulator has the same structure as radiation from kicker undulator. They are added coherently: $\mathbf{E} = \mathbf{E}_1 + \mathbf{E}_2 e^{i\phi} \xrightarrow{\mathbf{E}_1 = \mathbf{E}_2} 2\cos(\phi/2)\mathbf{E}_1 e^{i\phi/2}$
- $\Rightarrow \quad \mathbf{Energy \ loss \ after \ passing \ 2 \ undulators} \\ \Delta U \propto \left| E^2 \right| = 4 \cos \left(\phi / 2 \right)^2 \left| \mathbf{E}_1^2 \right| = 2 \left(1 + \cos \phi \right) \left| \mathbf{E}_1^2 \right| = 2 \left(1 + \cos \left(kM_{56} \frac{\Delta p}{p} \right) \right) \left| \mathbf{E}_1^2 \right| = 2 \left(1 + \cos \left(kM_{56} \frac{\Delta p}{p} \right) \right) \left| \mathbf{E}_1^2 \right| = 2 \left(1 + \cos \left(kM_{56} \frac{\Delta p}{p} \right) \right) \left| \mathbf{E}_1^2 \right| = 2 \left(1 + \cos \left(kM_{56} \frac{\Delta p}{p} \right) \right) \left| \mathbf{E}_1^2 \right| = 2 \left(1 + \cos \left(kM_{56} \frac{\Delta p}{p} \right) \right) \left| \mathbf{E}_1^2 \right| = 2 \left(1 + \cos \left(kM_{56} \frac{\Delta p}{p} \right) \right) \left| \mathbf{E}_1^2 \right| = 2 \left(1 + \cos \left(kM_{56} \frac{\Delta p}{p} \right) \right) \left| \mathbf{E}_1^2 \right| = 2 \left(1 + \cos \left(kM_{56} \frac{\Delta p}{p} \right) \right) \left| \mathbf{E}_1^2 \right| = 2 \left(1 + \cos \left(kM_{56} \frac{\Delta p}{p} \right) \right) \left| \mathbf{E}_1^2 \right| = 2 \left(1 + \cos \left(kM_{56} \frac{\Delta p}{p} \right) \right) \left| \mathbf{E}_1^2 \right| = 2 \left(1 + \cos \left(kM_{56} \frac{\Delta p}{p} \right) \right) \left| \mathbf{E}_1^2 \right| = 2 \left(1 + \cos \left(kM_{56} \frac{\Delta p}{p} \right) \right) \left| \mathbf{E}_1^2 \right| = 2 \left(1 + \cos \left(kM_{56} \frac{\Delta p}{p} \right) \right) \left| \mathbf{E}_1^2 \right| = 2 \left(1 + \cos \left(kM_{56} \frac{\Delta p}{p} \right) \right) \left| \mathbf{E}_1^2 \right| = 2 \left(1 + \cos \left(kM_{56} \frac{\Delta p}{p} \right) \right) \left| \mathbf{E}_1^2 \right| = 2 \left(1 + \cos \left(kM_{56} \frac{\Delta p}{p} \right) \right) \left| \mathbf{E}_1^2 \right| = 2 \left(1 + \cos \left(kM_{56} \frac{\Delta p}{p} \right) \right) \left| \mathbf{E}_1^2 \right| = 2 \left(1 + \cos \left(kM_{56} \frac{\Delta p}{p} \right) \right) \left| \mathbf{E}_1^2 \right| = 2 \left(1 + \cos \left(kM_{56} \frac{\Delta p}{p} \right) \right) \left| \mathbf{E}_1^2 \right| = 2 \left(1 + \cos \left(kM_{56} \frac{\Delta p}{p} \right) \right|$
- OSC can be achieved even in the absence of optical amplifier
- Passive OSC increases SR damping rates by ~ an order of magnitude
- It should be easier to get larger bandwidth in a passive OSC
 - Bandwidth is limited by dispersion in lens material (~6 mm glass)

Gain in active OSC - 10 dB (next talk)

- $\sqrt{10} \approx 3$ times faster cooling
- Bandwidth loss has to be less than
 3 times

Optical system for Passive OSC

- 3 lens system
 - Transfer matrix = ±I
 => no depth of field problem
- Two solutions
 - I: M= -I (D center lens)
 - II: M = +I (F center lens)
- I is preferred
 - Weaker focusing for all lenses
 - Smaller focusing chromaticity
 - Suppression of divergence of radiation and its particle in the kicker undulator
 - Beam (center to center): M₁₁=M₂₂=-1.07 M₃₃=M₄₄=-2.07

Rms beam sizes in absence of OSC, σ_x=0.25 mm - in undulators Radiation HWHM - 0.35 mm

Cooling Rates and Other Beam Parameters

Band	2.2 - 3.3 μm
Damp. rates (x=y/s)	6.3/5.2 s ⁻¹
Geometric acceptance	5 μm
Dynamic acceptance	0.15 μm
Average vacuum (H ₂ equiv.)	2 10 ⁻¹⁰ Torr
Vacuum lifetime	50 min.
SR loss per turn	13.3 eV
RF voltage	30 V
Harmonic number	-0.178
RF bucket height, $(\Delta p/p)_{max}$	10 ⁻³
RMS bunch length (no OSC)	22 cm
Number of particles per bunch	10 ⁶
Touschek lifetime	1.3 hour
IBS H.emit. growth rate	0.1 s ⁻¹
IBS L.emit. growth rate	0.44 s ⁻¹

- Number of particles is limited by IBS and Touschek effect
- OSC cooling test will operate well below the optimal gain
 - No interaction through cooling system

Other Limitations

Quantum effects play little role in the OSC cooling

- However interesting studies of quantum behavior can be done
 - In particular, single electron cooling

Quantum Mechanical Treatment of Transit-Time Optical Stochastic Cooling of Muons

A. E. Charman¹ and J. S. Wurtele^{1, 2}

¹Department of Physics, U.C. Berkeley, Berkeley, CA 94720^{*}

²Center for Beam Physics, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

(Dated: April 9, 2009)

SLAC-PUB-8662 December 2000

Quantum theory of Optical Stochastic Cooling *

S. Heifets,

Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309, USA

M.Zolotorev,

Lawrence Berkeley National Laboratory, Berkeley, CA 94729, USA

<u>Conclusions</u>

- Optical stochastic cooling looks as a promising technique for future hadron colliders (not extremely high energy of course)
- Experimental study of OSC in Fermilab is in its initial phase
 - It is aimed to validate cooling principles and to demonstrate cooling with and without optical amplifier
- The beam intensity ranges from a single electron to the bunch population limited by operation at the optimum gain (10⁸-10⁹)
 - Single electron cooling localization of electron wave function and essence of quantum mechanics
 - Quantum noise for passive cooling and cooling with OA

IOTA Timeline

FY15	20 MeV e- commissioned HE beam line 40% IOTA parts 60%
FY16	50 MeV e- commissioned 150 MeV CM2 to dump IOTA installed 60%
FY17	IOTA installed IOTA <i>e</i> - commissioned <i>p</i> + RFQ re-commiss'd 50% IOTA research starts with <i>e</i> -
FY18	Proton RFQ moved 100% <i>p+</i> RFQ commissioned, move to IOTA
FY19	IOTA research starts with <i>p+</i>
FY20	(IOTA research continues)

Backup Slides

Basics of OSC – Radiation Focusing to Kicker Undulator

Modified Kirchhoff formula

$$E(r) = \frac{\omega}{2\pi i c} \int_{S} \frac{E(r')}{|r-r'|} e^{i\omega|r-r'|} ds'$$

$$\Longrightarrow \qquad E(r) = \frac{1}{2\pi i c} \int_{S} \frac{\omega(r') E(r')}{|r-r'|} e^{i\omega|r-r'|} ds$$

- Effect of higher harmonics
 - Higher harmonics are normally located outside window of optical lens transparency and are absorbed in the lens material

Dependences of retarded time (t_p) and E_x on time for helical undulator
 Only first harmonic is retained in the calculations presented below

<u>Basics of OSC – Longitudinal Kick for K<<1</u>

- For $K \ll 1$ refocused radiation of pickup undulator has the same structure as radiation from kicker undulator. They are added coherently: $\mathbf{E} = \mathbf{E}_1 + \mathbf{E}_2 e^{i\phi} \xrightarrow{\mathbf{E}_1 = \mathbf{E}_2} 2\cos(\phi/2)\mathbf{E}_1 e^{i\phi/2}$
- $\Rightarrow \quad \text{Energy loss after passing 2 undulators} \\ \Delta U \propto \left| E^2 \right| = 4\cos\left(\phi/2\right)^2 \left| \mathbf{E}_1^2 \right| = 2\left(1 + \cos\phi\right) \left| \mathbf{E}_1^2 \right| = 2\left(1 + \cos\left(kM_{56}\frac{\Delta p}{p}\right)\right) \left| \mathbf{E}_1^2 \right|$
- Large derivative of energy loss on momentum amplifies damping rates and creates a possibility to achieve damping without optical amplifier
 - SR damping: $\lambda_{\parallel_SR} \approx \frac{2\Delta U_{SR}}{pc} f_0$

• OSC:
$$\lambda_{\parallel OSC} \approx f_0 \frac{2\Delta U_{wgl}}{pc} (GkM_{56}) \xrightarrow{kM_{56}(\Delta p/p)_{max} = \pi} f_0 \frac{2\Delta U_{wgl}}{pc} \left(\frac{G}{(\Delta p/p)_{max}} \right)$$

where G - optical amplifier gain, $(\Delta p/p)_{max}$ - cooling system acceptance $\Rightarrow \lambda_{\parallel OSC} \propto B^2 L \propto K^2 L$ - but cooling efficiency drops with K increase above ~1

<u>Basics of OSC – Longitudinal Kick for K<<1(continue)</u>

Radiation wavelength depends on θ as

$$\lambda = \frac{\lambda}{2\gamma^2} \left(1 + \gamma^2 \theta^2 \right)$$

Limitation of system bandwidth by (1) optical amplifier band or (2) subtended angle reduce damping rate

$$\lambda_{\parallel_SR} = \lambda_{\parallel_SR0} F(\gamma \theta_{\rm m}), \qquad F(x) = 1 - \frac{1}{\left(1 + x^2\right)^3}$$

For narrow band:
$$\Delta U_{wgl} = \Delta U_{wgl0} \left(\frac{3\Delta \omega}{\omega} \right), \quad \frac{3\Delta \omega}{\omega} << 1$$

where $\Delta U_{wgl0} = \frac{e^4 B^2 \gamma^2 L}{3m^2 c^4} \begin{cases} 1, & F \text{lat wiggler} \\ 2, & \text{Helical wiggler} \end{cases}$ the energy radiated in one undulator

Basics of OSC – Radiation from Flat Undulator

For arbitrary undulator parameter we have

$$\Delta U_{OSC_{-}F} = \frac{1}{2} \frac{4e^4 B_0^2 \gamma^2 L}{3m^2 c^4} GF_f(K, \gamma \theta_{\max}) F_u(\kappa_u)$$

$$F_u(\kappa_u) = J_0(\kappa_u) - J_1(\kappa_u), \quad \kappa_u = K^2 / (4(1+K^2/2))$$

Fitting results of numerical integration yields:

$$F_h(K, \infty) \approx \frac{1}{1+1.07K^2 + 0.11K^3 + 0.36K^4}, \quad K \equiv \gamma \theta_e \le 4$$

$$\Theta_m^2 F_h(K, \Theta_m) F_u(K)$$

$$\int_{0}^{0} \frac{1}{1} \frac{1}{2} \frac{1}{3} \frac{1}{3} \frac{1}{4}$$

Dependence of wave length on θ:

$$\lambda \approx \frac{\lambda_{wgl}}{2\gamma^2} \left(1 + \gamma^2 \left(\theta^2 + \frac{\theta_e^2}{2} \right) \right)$$

 $K \equiv \gamma \theta_e$

- Flat undulator is "more effective" than the helical one
- For the same K and λ_{wgl} flat undulator generates shorter wave lengths

For both cases of the flat and helical undulators and for fixed Ba decrease of λ_{wgl} and, consequently, λ yields kick increase

but wavelength is limited by both beam optics and light focusing

Transfer Matrix for OSC Chicane

Chicane displaces the beam closer to its center

$$\mathbf{M}_{ta} = \begin{pmatrix} 1 & \mathbf{L}_{.d} & \mathbf{0} & \frac{\mathbf{L}_{.d}^{\cdot \varphi}}{2} \\ \mathbf{0} & 1 & \mathbf{0} & \varphi \\ -\varphi & -\frac{\mathbf{L}_{.d}^{\cdot \varphi}}{2} & 1 & -\frac{\mathbf{L}_{.d}^{\cdot \varphi}^{2}}{2} \\ -\varphi & -\frac{\mathbf{L}_{.d}^{\cdot \varphi}}{2} & 1 & -\frac{\mathbf{L}_{.d}^{\cdot \varphi}^{2}}{2} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} \begin{pmatrix} 1 & \mathbf{L}_{.d} & \mathbf{0} & -\frac{\mathbf{L}_{.d}^{\cdot \varphi}}{2} \\ \mathbf{0} & 1 & \mathbf{0} & -\varphi \\ \varphi & \frac{\mathbf{L}_{.d}^{\cdot \varphi}}{2} & 1 & -\frac{\mathbf{L}_{.d}^{\cdot \varphi}^{2}}{2} \\ -\varphi & -\frac{\mathbf{L}_{.d}^{\cdot \varphi}}{2} & 1 & -\frac{\mathbf{L}_{.d}^{\cdot \varphi}^{2}}{2} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} \begin{pmatrix} 1 & \mathbf{L}_{.d} & \mathbf{0} & -\frac{\mathbf{L}_{.d}^{\cdot \varphi}}{2} \\ \mathbf{0} & 1 & \mathbf{0} & -\varphi \\ \varphi & \frac{\mathbf{L}_{.d}^{\cdot \varphi}}{2} & 1 & -\frac{\mathbf{L}_{.d}^{\cdot \varphi}^{2}}{2} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} \begin{pmatrix} 1 & \mathbf{L}_{.d} & \mathbf{0} & -\frac{\mathbf{L}_{.d}^{\cdot \varphi}}{2} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} \begin{pmatrix} 1 & \mathbf{L}_{.d} & \mathbf{0} & -\frac{\mathbf{L}_{.d}^{\cdot \varphi}}{2} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} \begin{pmatrix} 1 & \mathbf{L}_{.d} & \mathbf{0} & -\frac{\mathbf{L}_{.d}^{\cdot \varphi}}{2} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} \begin{pmatrix} 1 & \mathbf{L}_{.d} & \mathbf{0} & -\frac{\mathbf{L}_{.d}^{\cdot \varphi}}{2} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} \begin{pmatrix} 1 & \mathbf{L}_{.d} & \mathbf{0} & -\frac{\mathbf{L}_{.d}^{\cdot \varphi}}{2} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} \begin{pmatrix} 1 & \mathbf{L}_{.d} & \mathbf{0} & -\frac{\mathbf{L}_{.d}^{\cdot \varphi}}{2} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} \begin{pmatrix} 1 & \mathbf{L}_{.d} & \mathbf{0} & -\frac{\mathbf{L}_{.d}^{\cdot \varphi}}{2} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} \begin{pmatrix} 1 & \mathbf{L}_{.d} & \mathbf{0} & -\frac{\mathbf{L}_{.d}^{\cdot \varphi}}{2} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} \begin{pmatrix} 1 & \mathbf{L}_{.d} & \mathbf{0} & -\frac{\mathbf{L}_{.d}^{\cdot \varphi}}{2} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} \begin{pmatrix} 1 & \mathbf{L}_{.d} & \mathbf{0} & -\frac{\mathbf{L}_{.d}^{\cdot \varphi}}{2} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} \begin{pmatrix} 1 & \mathbf{L}_{.d} & \varphi \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} \begin{pmatrix} 1 & \mathbf{L}_{.d} & \varphi \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} \begin{pmatrix} 1 & \mathbf{L}_{.d} & \varphi \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} \begin{pmatrix} 1 & \mathbf{L}_{.d} & \varphi \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} \begin{pmatrix} 1 & \mathbf{L}_{.d} & \varphi \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} \begin{pmatrix} 1 & \mathbf{L}_{.d} & \varphi \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} \begin{pmatrix} 1 & \mathbf{L}_{.d} &$$

Leaving only major terms we obtain

Basics of OSC – Correction of the Depth of Field

- It was implied above that the radiation coming out of the pickup undulator is focused on the particle during its trip through the kicker undulator
 - It can be achieved with lens located at infinity

$$\frac{1}{2F + \Delta s} + \frac{1}{2F - \Delta s} = \frac{1}{F} \quad \rightarrow \quad \frac{1}{F - \Delta s^2 / 4F} = \frac{1}{F} \quad \xrightarrow{F \to \infty} \quad \frac{1}{F} = \frac{1}{F}$$

- but this arrangement cannot be used in practice
- A 3-lens telescope can address the problem within limited space $\begin{bmatrix} 1 & L \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -F_1^{-1} & 1 \end{bmatrix} \begin{bmatrix} 1 & L_1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -F_2^{-1} & 1 \end{bmatrix} \begin{bmatrix} 1 & L_1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & L_1 \\ -F_1^{-1} & 1 \end{bmatrix} \begin{bmatrix} 1 & L_1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$

Optical Stochastic Cooling at IOTA ring, Valeri Lebedev, Cool-15

Dynamic Aperture Limitation by Sextupoles of OSC Insert

Introduce dimensionless variables

$$\tilde{\theta} = \beta^2 \frac{\theta + \alpha x / \beta}{x_{0S}^2}, \quad \tilde{x} = \frac{\beta x}{x_{0S}^2} \quad \text{where} \quad x_{0S}^2 = \frac{pc}{e(SL)}$$

Then the following transforms drive particle motion

$$\begin{bmatrix} \tilde{x} \\ \tilde{\theta} \end{bmatrix}' = \begin{bmatrix} \cos \mu & \sin \mu \\ -\sin \mu & \cos \mu \end{bmatrix} \begin{bmatrix} \tilde{x} \\ \tilde{\theta} \end{bmatrix}, \quad \tilde{\theta}' = \tilde{\theta} + \frac{\tilde{x}^2}{x_{0S}^2}$$

- In vicinity of 3rd order resonance: $\tilde{x}_b \approx 25 \left| [v] - \frac{1}{3} \right| \Rightarrow \varepsilon_b \approx \frac{625 x_{0S}^4}{\beta^3} \left([v] - \frac{1}{3} \right)^2$
- Far from the resonance the stability boundary can be estimated from the phase space distortion =>

$$\tilde{x}_b \approx 3 \implies \mathcal{E}_b \approx \frac{9{x_{0S}}^4}{\beta^3}$$

Transition happens at detuning $\Delta v \approx 0.1$

