Laser Cooling of Relativistic Ion Beams Recent Results and Future Perspectives

<u>Michael Bussmann</u>¹, Markus Löser^{1,6}, Michael Seltmann¹, Matthias Siebold¹, Ulrich Schramm^{1,6}, Tobias Beck³, Benjamin Rein³, Thomas Walther³, Sascha Tichelmann³, Gerhard Birkl³, Rodolfo Sanchez-Alarcon^{2,4}, Johannes Ullmann^{2,4}, Matthias Lochmann^{2,4}, Wilfried Nörtershäuser^{3,4}, Lewin Eidam³, Oliver Boine-Frankenheim^{2,3}, <u>Danyal Winters</u>², Christophor Kozhuharov², Shahab Sanjari², Yuri Litvinov², Tino Giacomini², Markus Steck², Christina Dimopoulou², Fritz Nolden², S. Shevelko², Thomas Stöhlker², Peter Spiller², <u>Weiqiang Wen⁵</u>, Jie Yang⁵, Dacheng Zhang⁵, Xinwen Ma⁵, Volker Hannen⁷

- ¹ Helmholtz-Zentrum Dresden-Rossendorf
- ² GSI Helmholtzzentrum für Schwerionenforschung
- ³ Technische Universität Darmstadt
- ⁴ Universität Mainz
- ⁵ Institute for Modern Physics, Lanzhou
- ⁶ Technische Universität Dresden
- ⁷ Universität Münster

Atomic Physics at Relativistic Beam Energies

Laser Cooling at Relativistic Energies – Relativistic Doppler Shift

Scanning Laser Frequency with a Coasting Ion Beam

Bunching the Ion Beam counteracts the Laser Force

C³⁺ Laser Cooling Setup (ESR, CSRe)

Line Shape determines the Probability of Photon Absorption

Scattering Rate of Photons is directly proportional to Line Shape

$$\begin{aligned} R'(\delta') &= L'(\delta') / \tau'_{trans} = \frac{1}{2\tau'_{trans}} \frac{S'(1/\tau'_{trans})^2}{4\delta'^2 + (1/\tau'_{trans})^2(1+S')} \\ \delta' &= \omega'_{photon} - \omega'_{trans} - \Delta p'_{ion} k'_{phot} / m'_{ion} \\ S' &\sim 1 \qquad : \text{Saturation Parameter} \\ t'_{trans} &\sim \text{ns} \qquad : \text{Lifetime of the Transition} \\ (\text{determines minimum cooling time!}) \\ d' &\qquad : \text{detuning between laser light and atomic transition} \\ (\text{photon frequency in rest frame!}) \end{aligned}$$

Saturation Intensity > 1, depends on Relativistic Effects and Transition

$$S' = \frac{I'_{laser}}{I'_{sat}}$$
$$I'_{sat} = \frac{2\pi^2 hc}{3\tau'_{trans}\lambda'^3_{trans}} = P'_{sat} / (\pi w'^2_{laser})$$

l'_{sat}

I_{sat} for C³⁺

: Saturation Intensity (laser power depends on the ion beam diameter)
: Laser Spot Size = Ion Beam Diameter (we need between 1 mW to 100 mW)

C³⁺ @ ESR, CSRe
$$(1+b)^{-3}g^{-4}I'_{sat} = 9.2 \text{ W/cm}^2 / ((1+0.47)^3 \times 1.13^4)$$

= 17.9 mW/mm²

Force = Momentum Transfer Rate

Laser Cooling Force vs. Electron Cooling Force (Coasting Beam)

20 mW Laser Beam working against the 250 mA Electron Cooler

Laser Cooling Force vs. Electron Cooling Force (Coasting Beam)

Electron Cooler "heats up" laser-cooled Part of Beam

20 mW Laser Beam working against the 250 mA Electron Cooler

arb. units

Schottky Signal Densi

Schottky Measurements of Bunched Laser Cooling

Schottky Measurements of Bunched Laser Cooling

With increasing Coupling, IBS increases (but not forever!)

How would a Crystalline Beam look like?

Seite 18

The Structure of Ion Crystals depends on the Confinement Potential

Laser Cooling at ESR (see Poster by W. Wen for CSRe Activities)

Scanning the Bucket Frequency (2004, 2006)

 $f_{bunch} = 20 \text{ x } 1.295 \text{ MHz} - Df_{bunch}/Dt = 20 \text{ Hz} / 5 \text{ s} - f_{sync} \sim 170 \text{ Hz} - Dp/p_{accept} \approx 10^{-5}$

C ³⁺	
E _{beam}	= 122 MeV/u
	= 1.47 GeV
(b = 0.47, g = 1.13)	
f _{rev}	= 1.295 MHz
t _{beam}	~ 100 s
Slip factor	= 0.607
Betatron tune	= 2.3

Diode laser (cw) = 257 nm l_{laser}

 $2S_{1/2} \rightarrow 2P_{1/2}$ = 155.07 nm l_{rest} Dp/p ~ 10⁻⁵ = 3.8 ns t_{rest}

concept

Scanning the Laser Frequency (2012)

Schottky Measurements of Bunched Laser Cooling

Schottky Measurements of Bunched Laser Cooling

Turn-Key Pulsed Laser System (Dp/p acc. ~ 10⁻⁴, MHz repetition rate)

Zero Schottky Signal @ 16 mA (much better vacuum in 2006)

"Laser Cooling **[at mid-size Ion Storage Rings**] is not very active" **M. Steck on Monday (freely interpreted)**

"That's because there are not many mid-size **Rings available"** M. Bussmann

German & Chinese Activities in Laser Cooling

- 4 BMBF-funded University Contributions to Laser Cooling (1 x Dresden, 1 x Münster, 2 x Darmstadt) ~ 500 k€
- Chinese NSFC funding for Wen Weiqiang ~ 40 k€
- 1 Beam Time at ESR (2012), 2 at CSRe (2013, 2014) compared to 3 Beam Times between 1998 and 2006
- Dedicated Laser Cooling Project at SIS 100 inside the Helmholtz Program "Accelerator Research & Development"

German & Chinese Activities in Laser Cooling

- 4 BMBF-funded University Contributions to Laser Cooling (1 x Dresden, 1 x Münster, 2 x Darmstadt) ~ 500 k€
- Chinese NSFC funding for We
- 1 Beam Time at ESR (2012), compared to 3 Beam Times b
- Dedicated Laser Cooling Proje Helmholtz Program "Accelera"

"ARD" Laser Cooling at SIS 100 (D. Winters, P. Spiller, M. Bussmann)

Lorentz-boosted Fluorescence (e.g. "Optical Schottky")

Mitglied der Helmholtz-Gemeinschaft

Mitalied der Helmholtz-Gemeinschaf

*hey, one can dream

*hey, one can dream

Mitglied der Helmholtz-Gemeinschaf

