350 kV Photoelectron Gun with Inverted-Insulator Geometry

P. Adderley, D. Bullard, E. Forman, J. Grames, J. Hansknecht, C. Hernandez-Garcia, <u>M. Poelker</u>, M. Stutzman, R. Suleiman, S. Zhang

Students: M. BastaniNejad, Md. Abdullah A. Mamun, Y. Wang

COOL'15 Workshop, Jefferson Lab, September 28 – October 2, 2015

Matt Poelker, Jefferson Lab

Slide 1

A NEW PHOTOGUN FOR NEW INITIATIVES

- Compact 10 MeV accelerator to commission
 new hardware destined for CEBAF
 - Polarized target for Hall B HDIce
 - New SRF capture section for injector
 - Test bed to improve beam quality for demanding parityviolation experiments
- Load-locked gun for JLab's FEL/ERL for DarkLight and other experiments
 - DC high voltage gun, but with CsK₂Sb photocathode
- Electron Ion Collider (MEIC, eRHIC, LHeC)
 - High average current polarized beams and very high current un-polarized beams for cooling proton beams
 - Magnetized beam

350kV inverted gun + chopper + buncher + "traditional" JLab 1/4 cryomodule

10 MeV beam to commission HDIce

ERL Circulator Cooler Concept

Design Choices

- Energy Recovery Linac (ERL)
- Compact circulator ring to meet design challenges
- Large RF power, up to 81 MW
- Very high electron beam current: 1.5 A

Required technologies

- High current ERL (55 MeV, 15 to150 mA)
- Magnetized beam
- High bunch charge (2 nC)
- Ultra fast kicker

Proposed by S. Derbenev

Slide 4

AES gridded thermionic cathode in RF gun

Alan Todd, AES, presented at ERL 11 Workshop, Tsukuba, Japan

Matt Poelker, Jefferson Lab

AES gridded thermionic cathode in RF gun

Alan Todd, AES, presented at ERL 11 Workshop, Tsukuba, Japan

Matt Poelker, Jefferson Lab

TRIUMF ARIEL rf modulated thermionic gun

- rf modulation frequency 650 MHz,
- pulse length +/- **16**^o (137 ps).
- average current **10** mA
- charge / bunch **15.4** pC
- kinetic energy 300 keV
- normalized transverse emittance $^{5} \mu m$
- duty factor for macro pulsing 0.1-100% (3 W-3 kW)
- → thermionic source with rfmodulation applied to grid

Friedhelm Ames, TRIUMF, presented at EIC14, March 17-21, Jefferson Lab, Newport News, VA, USA

TRIUMF ARIEL rf-modulated thermionic gun

Low-Energy RHIC electron Cooling (LEReC)

- Peak current of 75mA (world record)
- NaKSb photocathode
- 2.6 day 1/e lifetime at 65mA
- 8h at 65mA
- With only 5W laser power
- now pushing to 100mA

Cornell DC high voltage photogun

Matt Poelker, Jefferson Lab

Slide courtesy Georg Hoffstaetter and Bruce Dunham

Always Tweaking the Design

Matt Poelker, Jefferson Lab

Slide 10

Jefferson Lab

The CEBAF - ILC 200kV Inverted Gun

Our "Load-locked" GaAs photogun:

- Gun Vacuum ~ mid to low 10⁻¹² Torr
- Beamline vacuum could be improved...

The CEBAF - ILC 200kV Inverted Gun

Our "Load-locked" GaAs photogun:

- Gun Vacuum ~ mid to low 10^{-12} Torr
- Beamline vacuum could be improved...

Benefits of Higher Gun Voltage

- I. Reduce space-charge-induced emittance growth, maintain small transverse beam profile and short bunch-length. In other words, make a "stiff" beam right from the gun
- II. Reduce problems associated with Surface Charge Limit (*i.e.*, QE reduction at high laser power)
- III. Prolong Charge Lifetime (?)
- IV. Compact, less-complicated and less-expensive injector

Biggest Obstacle: Field Emission and HV Breakdown... which lead to bad vacuum and photocathode death

FIELD EMISSION

- Sources of Field Emission: micro-protrusions, contamination on surface, material defects and impurities, ionization of desorbed gas, etc.,
- Material choices: hardness, work function, grain structures and grain boundaries, electrical conductivity, thermal conductivity
- Surfaces: generally people assume smooth is better than coarse, although experiments indicate smooth does not guarantee "good"
- Mostly, people assume 5 MV/m is "easy" we want to operate at 10 MV/m or higher

BREAKDOWN IN VACUUM

Figure 7: High voltage holdoff versus vacuum gap dimension.

350 kV Photogun

Building the 350 kV Gun

• Start with "dummy" electrodes and test different insulators and cathode screening electrode

INSULATORS AND SCREENING ELECTRODE

- Longer R30 insulators, conventional alumina
- Short R28 insulator, bulk resistivity, mildly conductive
- Longer R30 insulator, bulk resistivity, mildly conductive
- ZrO-coated R30 insulator, also mildly conductive
- dummy electrode with a screening electrode (shed)

BREAKDOWN AT CABLE/INSULATOR INTERFACE

• Problems at the cable junction, atmosphere side

 Note: Field emission was managed via kryptonprocessing. i.e., voltage first applied with ~10⁻⁵ Torr krypton added to gun chamber

SUMMARY OF TESTS

• Two and 1/2 configurations reached our voltage goal

Insulator type	Length (cm)	Transversal resistivity (Ohm. em)	Dielectric constant	Maximum voltage	Performance
R30 sample 1	20	5.0x10 ¹⁵	<u>e1/80</u> 9.1	329	Breakdown and puncture near high voltage end
R30 sample 2	20	5.0x10 ¹⁵	9.1	300	Breakdown
R30 with					370 kV with krypton 4-hr soak,
additional screening electrode	20	5.0x10 ¹⁵	9.1	375	350 kV in vacuum 4-hr soak.
					Significant field emission in both cases
R30 ZrO-coated	20	5.0x10 ¹⁵	9.1	340	Breakdown and puncture near ground end
R28 doped	13	7.4x10 ¹⁵	8.4	360	360 kV with krypton 1-hr soak, 350kV in vacuum 5-hr soak, 2 times Minimal field emission in both cases
R30 doped	20			360	Breakdown originating at high voltage end and puncture near ground end

Work of Carlos Hernandez-Garcia and the "team"

Slide 20

LINEAR POTENTIAL DROP

• Want a linear potential gradient along length of the insulator

LINEAR POTENTIAL DROP

Want a linear potential gradient along length of the insulator

• Note - POISSON does not accurately model the mildly-conductive feature of the black insulator

Work of Carlos Hernandez-Garcia

• Plan Y: Combine the two features that provided incremental success: screening electrode and doped black R30 insulator

The gap between shed and insulator

Work of Carlos Hernandez-Garcia and Yan Wang

The gap between shed and insulator

Plan Z

- Combination of doped insulator and shed, SF6 and epoxy receptacle, plus added length
- the screening electrode, a good design...

- r1 = 1 cm
- r2 = 2.5 cm
- r3 = 9.5 cm
- 3 mm gap

Work of Yan Wang

FIELD EMISSION: THINGS WE'VE BEEN STUDYING

- Fowler-Nordheim Theory: a good place to start, but it will disappoint ...
- Diamond-paste polished stainless steel
 - Is it necessary to have such a smooth surface?
- Gas conditioning: an essential tool
- Electropolished stainless steel: speed the process?
- Barrel-polished stainless steel: another option
- BCP-d niobium: expensive
- TiN-coated aluminum: promising...
- 900 °C degas, CO₂ snow, high pressure rinsing...

FIELD EMISSION TEST STAND

- Spellman -225kV supply, small "R28" inverted insulators, variable cathode/anode gap from to 10 to 50mm, field strength to ~ 20 MV/m
- Build a test stand that resembles an actual gun (tests with small gaps and high field strength but low voltage, don't appear to be very useful)

DIAMOND-PASTE POLISHING

- Receive the electrode from the machine shop with "32" surface finish
- Silicon carbide polishing with 300 grit paper to remove obvious visible scratches
- Solvent cleaning in ultrasonic bath of alkali solution
- Silicon carbide polishing with 600 grit paper
- Solvent cleaning in ultrasonic bath of alkali solution
- Polish with 6mm grit
- Ultrasonic clean
- Polish with 3mm grit
- Ultrasonic clean
- High pressure rinsing (1200 psi) for 20 minutes with ultrapure de-ionized water with resistivity > 18 MWcm.
- High temperature (900°C) vacuum degas for one hour

DIAMOND-PASTE POLISHING

- Receive the electrode from the machine shop with "32" surface finish
- Two months later and the Silicon carbide polishing with 300 grit ۲ obvious visible scratches

- electrode is ready for high voltage! Maybe it will work!? sure rinsing (1200 psi) for 20 minutes with ultrapure de-ionized water with resistivity > 18 MWcm.
- High temperature (900°C) vacuum degas for one hour ۲

•

GAS CONDITIONING

- Field emission ionizes inert gas
- Ions bombard electrode, hopefully near field emitter, which can be sputtered away
- And ions get implanted, increasing work function

Benefits of implantation are reversible

Work of M. BastaniNejad, E. Forman, C. Hernandez-Garcia

Sputtering and Implantation

Sputtering Yield

Sputtering and Implantation

Sputtering and Implantation

- Helium: want a shallow implantation depth, so helium works best when FE turns ON at lower voltages, and/or with small gaps (10 to 20mm), don't expect much sputtering
- Krypton: can work at any voltage, good for larger gaps (30 to 50mm), sometimes too much sputtering creates a new field emitters

A POWERFUL TECHNIQUE

- Gas conditioning can turn a BAD electrode into a GOOD electrode
- TURN OFF ion pump
- NEG pumps don't pump inert gas
- Set voltage to excite field emitter
- Add gas at 10⁻⁵ Torr, apply voltage and watch for sharp decrease in FE current

Turn on Field Strength (MV/m) at 100pA , Before Gas Processing vs. Gaps

Gap (mm)	304L#1	304L#2	316LN#1	316LN#2
50	6.4	4.9	>12.6	8.7
40	6.6	5.4	>13.8	8.1
30	6.2	5.5	>15	9.1
20		6.6	15	10.5

Turn on Field Strength (MV/m) at 100pA , After Gas Processing vs. Gaps

Gap (mm)	304L#1	304L#2	316LN#1	316LN#2
50	>12.6	>12.6	>12.6	>12.6
40	>13.8	>13.8	>13.8	>13.8
30	13.6	13.5	>15	12.9
20		14.4	17.3	14.1

Perhaps 316L is better than 304L?

BACKUP SLIDES

• Thank You

DIAMOND-PASTE POLISHED STAINLESS STEEL

14.1

14.4

- Variable performance is common
- Favorable response to gas conditioning

Turn on Fiel	d Strengt	:h (MV/m)	, Before Gas Processing vs. Gaps			
Gap(mm)	EP1	EP2	EP3	DPP1	DPP2	DPP3
50	10.9	7.3	>12.6	6.4	4.9	8.7
40	11.1	8.1	>13.8	6.6	5.4	8.1
30	11.4	8.7	14.8	6.2	5.5	9.1
20	11.3	10.5	17.5		6.6	10.5
Turn on Field Strength (MV/m)			at 100pA	, After Gas Processing vs. Gaps		
Gap(mm)	EP1	EP2	EP3	DPP1	DPP2	DPP3
50	8.2	9.2	>12.6	>12.6	>12.6	>12.6
40	9.1	9.9	>13.8	>13.8	>13.8	>13.8
30	9.8	10.5	>15.1	13.6	13.5	12.9

>18.7

20

11.3

12.8

I TO V CURVES FOR NIOBIUM

Slide 39

BUFFERED CHEMICAL POLISHING OF NIOBIUM

- Receive the electrode from the machine shop with "32" surface finish
- Silicon carbide polishing with 600 grit paper, if necessary, to remove obvious visible scratches
- Solvent cleaning in ultrasonic bath of alkali solution
- Buffered-chemical polishing to remove ~ 100 mm material
- High pressure rinsing (1200 psi) for 20 minutes with ultrapure de-ionized water with resistivity > 18 MWcm.
- High temperature (900°C) vacuum degas for one hour

FE RESULTS OF BCP-ED NIOBIUM

- Field strength at which the electrode exhibited 100pA of field emission, post krypton gas conditioning
- ">" symbol....the electrode did not produce 100pA of field emission

					\frown			
	FGNb1	FGNb2	SCNb1	SCNb2	LGNb1	LGNb2	DPP-SS1	DPP-SS2
50mm	11.8	10.7	>12.6	>12.6	>12.6	>12.6	>12.6	10.7
40mm	11.5	11.2	>13.8	>13.8	>13.8	>13.8	>13.8	10.0
30mm	10.8	12.0	>15.0	13.1	>15.0	15.0	13.6	9.9
20mm	10.4	14.1	>18.7	12.3	>18.7	17.5	No data	No data

NIOBIUM ELECTRODES

• More evidence that there's more to field emission than topography

ELECTROPOLISHED STAINLESS STEEL

- Can we avoid time-consuming diamond-paste polishing?
- Start with three test electrodes having different surface finish, and send them to commercial electropolishing company

	DPP1	DPP2	DPP3	EP1	EP2	EP3
Waviness (nm)	25	30	73	312	385	76
Roughness (nm)	11	29	31	163	140	37

TIN-COATED ALUMINUM

- Aluminum is cheap and easy to machine
- Takes just hours to polish to mirror-like finish with silicon-carbide paper
- Good thermal conductor, compared to steel, a nice feature when gun provides high current
- We used a "boutique" vendor to coat our small electrodes
- Can an industrial TiN-coating provide the same benefit? Need to test

SURFACE IMAGES AL AND TIN-AL

Note, the black spots are voids and defects, not particulate contamination from sand paper polishing

TIN-COATED ALUMINUM

Matt Poelker, Jefferson Lab

Slide 46

FOWLER-NORDHEIM LINE PLOTS

- These plots tell you b, the field enhancement factor, and $A_{\rm e}$, the field emitter area

Slide 47

FOWLER-NORDHEIM LINE PLOTS

 With three variables, there are an infinite number of solutions that provide a good fit

FOWLER-NORDHEIM LINE PLOTS

Electrodes	β , Pre Condit	e-Gas ioning	β , Post-Gas Conditioning		A _e (m ²), Pre- Gas Conditioning		A C	e (m²), Po Gas Condition	ost- ing
EP1	41	.3	413		1.2E-18			1.2E-18	}
EP2	48	35	362		8.5E-19			2.4E-18	3
EP3 <	50)1	456		5.3E-23			1.2E-22	
DPP1	22	28	134		9.7]	9.7E-19		1.1E-17	
DPP2	972		299 8.4E-20		E-20		7.1E-17		
DPP3	475		171	171 2.5E-20		E-20		1.4E-19	
						V	Vhy	not iden	itical here?
		DPP1	DPP2	DPP3	EP	I EI	22	EP3	
Waviness (nm)		25	30	73	312	2 38	35	76	
Roughness (nm)		11	29	31	163	3 14	10	37	
	· · ·			Slide 49		Ide	ntical here		

ELECTROPOLISHED STAINLESS STEEL

- EP-d electrodes exhibited less variability
- EP-d
 electrodes did
 not respond
 favorably to
 gas
 conditioning
- Best electrodes were DPP-d

Slide 50

ELECTROPOLISHED STAINLESS STEEL

1000

Anode Current (pA)

Anode Current (pA

Anode Current (pA)

- EP-d electrodes exhibited less variability
- EP-d

 electrodes did
 not respond
 favorably to
 gas
 conditioning
- Best electrodes were DPP-d

Turn on Field Strength (MV/m) at 100pA , Before Gas Processing vs. Gaps 800 600 Gap(mm) EP2 EP3 DPP1 DPP2 EP1 DPP3 400 200 50 10.9 7.3 >12.6 6.4 4.9 8.7 0 0 40 11.1 8.1 >13.8 6.6 5.4 8.1 30 11.4 8.7 14.8 6.2 5.5 9.1 1000 800 20 11.3 10.5 17.5 10.5 6.6 600 400 Turn on Field Strength (MV/m at 100pA, After Gas Processing vs. Gaps 200 0 Gap(mm) EP3 DPP1 EP1 EP2 DPP2 DPP3 250 50 8.2 9.2 >12.6 >12.6 >12.6 >12.6 1000 40 9.1 9.9 >13.8 >13.8 >13.8 >13.8 800 600 10.5 >15.1 13.6 30 9.8 13.5 12.9 400 >18.7 20 11.3 12.8 14.4 14.1 200 0 50 150 200 250 0 100 0 50 150 200 250 100 Voltage(kV) Voltage (kV)

BARREL POLISHING OF STAINLESS STEEL

BARREL POLISHING OF STAINLESS STEEL

Matt Poelker, Jefferson Lab

Slide 55

Electron Ion Collider at JLab

- $_{\rm O}$ Stage I MEIC
 - CEBAF as full-energy e⁻/e⁺ injector
 - 3 to12 GeV e-/e+
 - 25 to100 GeV protons
 - 12 to 40 GeV/u ions
- $_{\rm O}$ Stage II EIC
 - up to 20 GeV e⁻/e⁺
 - up to 250 GeV protons
 - up to 100 GeV/u ions
- Two independent but complementary detectors

MEIC Layout

<u>Continuous</u> <u>Electron</u> <u>Beam</u> <u>Accelerator</u> <u>Facility</u>

Preparing for the next generation Parity-Violation Experiment

Preparing for the next generation Parity-Violation Experiment

- 1) deliver 100% long polarization to two halls simultaneously each gun/ beamline has spin manipulators
- parity violation experiments can monitor helicity correlated beam properties directly from gun. No other superimposed beams from gun to merger point
- 3) apertures at injector are good for non-parity users, they keep them. Apertures are bad for parity Users, the new line could eliminate them, hopefully even the chopper
- 4) Parity violation experiments get a laser "clean-up polarizer" to provide near perfect circular polarization, which helps reduce helicity correlated beam asymmetries