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Ionization cooling for muon beam 

•  Energy loss collision with atoms/molecules via 
ionization process 
–  Very high collision frequency (therefore a high cooling rate) 

since a high density cooling media is available 
–  Lost-energy is immediately recovered by RF accelerations 
–  Often a large angle scattering takes place by collision with  

nuclei of the cooling media (i.e. multiple scattering) 
–  Low Z material is ideal to minimize the large angle 

scattering 
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Highlights of D. Kaplan’s talk 
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Gaseous hydrogen is the best cooling material 
 - High energy-loss rate (dE/dx) 
 - Small scattering angle via protons (long radiation length X0) 
 - GH2 can also be used to suppress dark currents 
 → Eliminate a RF electric breakdown due to strong magnetic fields  
      (See B. Freemire’s talk) 

Highlights of D. Kaplan’s talk 
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Concept of hydrogen gas-filled Helical 
Cooling Channel (HCC) 
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Concept of hydrogen gas-filled Helical 
Cooling Channel (HCC) 
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New	conceptual	accelera9ng	system	
Key	feature:	
•	Dense	hydrogen	gas	distributed	homogeneously		
			in	a	laAce	with	constant	dispersion	
			→	Non-periodic	laAce	structure	

Homogeneous	gas	
absorber	in	
a	dipole	magnet	

p	

p0-δp	

p0+δp	

p0	

Par9cle	tracking	in	HCC	(red:	reference)	
Par9cle	mo9on	(blue)	is	periodic	due	to	the	solenoid	and	helical	
dipole	magne9c	fields	
Complete	linear	theory:	Ya.S.	Derbenev	&	R.P.	Johnson,	PRSTAB	8	041002	(2005)	
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Linear beam parameter in HCC 
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•  Betatron tune: #
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#
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Design concept of helical beam element 
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Beryllium	beam	entrance		
RF	window	

Hydrogen	gas-filled	RF	cavi9es		
in	helical	solenoid	coils	

RF	power	input	 Pressure	wall	

Helical	solenoid	coils	

RF	pickup	antenna	

Innova9ve	helical	beam	element	
•	Hydrogen	gas	filled	RF	cavity	
•	Helical	solenoid	coil	
•	Magnetron	
			-	Energy	efficient	RF	power	source	

Straight solenoid 

Helical solenoid coil 
Helical	magnet	
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Validate HCC theory with numerical 
simulation 
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Emittance evolution 
εr s( ) = εr,0 −εr,eq( )exp −Λrs( )+εr,eq

εT ,eq ≈
βT 13.6 MeV( )2

2mµβgTX0 dE ds

Equilibrium emittance 

εL,eq ≈
mec

2γ 2β 1−β 2 2( )βL
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β 2E

dE
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gL
β 2E

dE
ds

Cooling rate (decrement) 

ε s( ) = 1.68− 0.61( )exp −0.0307s( )+ 0.61

ε s( ) = 2.1−1.12( )exp −0.0307s( )+1.12

l = 0.5 m, n = 650 MHz, Gas Pressure = 160 atm @ 300 K 
E = 20 MV/m, RF window thickness = 60 mm, 10 RF cells / l	

Solid line is the prediction  
(Not a fitting curve!) 

gL → gL,0 +δgL, gT (=x,y) →1− δgL
2

δgL =
κ 2

1+κ 2 D̂
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Six-dimensional phase space evolution in helical 
cooling channel for muon collider scheme 
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6D	HCC	
•	RF	parameter	

	Epeak	=	20	MV/m	
	n	=	325	&	650	MHz	

										60	mm	thick	Be	window	
•	Gas	pressure	

	160	atm	at	300	K	
	43	atm	at	80	K	

•	Magne9c	fields	
	Bz	=	4	–	12	Tesla	

•	Equilibrium	emigance	
	eT	=	0.6	mm	(goal:	0.3	mm)	
	eL	=	0.9	mm	(goal:	1.5	mm)	

•	Transmission	(one	cooling	path)	
	60	%	

•	Channel	length	(one	cooling	path)	
	280	m	

Matching	

Simulated	6D	evolu9on	in	HCC	

z = 100 m 
z = 150 m 
z = 280 m 

z = 100 m 
z = 150 m 
z = 280 m (ΔE = ±4 MeV ∼ 
ΓHiggs) 

MAP	goal	

Equilibrium emittance was limited  
by the magnetic field strength 
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Variable cooling rate and equilibrium 
emittance by tuning helical lattice 
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To overcome equilibrium emittance limit… 

l = 0.35, 0.4, 0.5, 0.6 m	
15 T	
14 T	
13 T	
12 T	
11 T	
10 T	

Total B	

← b’a/b →	 small 	large 	

Feasibility of helical magnet vs 
achievable equilibrium emittance 

Magnet will 
be feasible 

• Shorter l generates lower emittance 
• Shorter l requires stronger B	
• Equal cooling decrements require 
   large b’a/b	
•	Lower	longitudinal	emigance		
			requires	lower	b’a/b	
•	Space	charge	is	not	important	
			→	Longitudinal	space	charge		
								focuses	for	posi9ve	η	
			→	Transverse	space	charge	is		
								neutralized	by	gas-plasma	
								(see	next	slide)	
•	For	example,	it	will	be	possible	to		
			reach	et	=	0.75	mm	and	el	=	0.75	mm	
			at	a	total	B	=	12	T	and	l	=	0.35	m	

b large	
b’ large	

b small	
b’ small	

b small	
b’ large	

Longitudinal enhance cooling will be 
applied for a Higgs factory 
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Matching and Low Energy Bunch Merging 
based on HCC 
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HFOFO Snake 

Straight solenoid 
+ RF  

Matching in (Energy transition Jump) 
Below → Above transition 



COOL’15 @ JLab, K. Yonehara 

Matching and Low Energy Bunch Merging 
based on HCC 
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HFOFO Snake 

Straight solenoid 
+ RF  

Helical accelerator for b = 1 channel 

Matching in (Energy transition Jump) 
Below → Above transition 

Phase space in a helical bunch merge channel 

Helical bunch merge channel 
= Accelerator + Isochronous channel 
Transmission ~90 % in 120 m  
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Acceptance in non-linear fields 
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Chromaticity in HCC 
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Study transverse acceptance 
• Added helical sextupole  
   component to compensate 
   a chromaticity 
• Transmission was improved 
   by 10 % 

Study longitudinal acceptance 
• RF power is consumed by beam-induced plasma 
• RF gradient drops by 20 % for the 21st bunch  
• Numerical study agrees well with the prediction 
    except for E = 15 MV/m 

Iadm ∝ h-1/2∝ bL 
h: slip factor 

Nominal E 

Analytical  
estimation 

Numerical 
simulation 
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Space Charge Neutralization and Plasma Lens 
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Beam-plasma interaction in gas-filled RF 
cavities 
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X (m) 

Z (m) 

m- Beam Plasma 
electrons 

Plasma density >> Beam density 
Plasma freq. << Collision freq.  

High pressure gas 

Electrons are quickly thermalized 
and the spatial distribution is “frozen” 

Beam	
~	1012	cm-3	

Neutral gas 
~ 1021 cm-3 

Ionization  
process 

Plasma chemistry 

Space charge 

Plasma	
~	1015	cm-3	

Beam-
Plasma 
Interaction 

Plasma chemistry 
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Space Charge Neutralization 
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1. Space-charge of the muon beam 
pushes plasma electrons outward 

Evd µ=

m- 
0≠E 0=E

3. This space-charge 
neutralization can change the 

beam dynamics 

br

4. Analytical estimation of space-
charge neutralization time for a 

simple configuration  
ps) 100(~ lengthbunchtypical<=

||)/(
0

enn be µ
ετ

Gaussian 
Beam 

m is not const. 

Less plasma for head  More plasma for tail  

Uniform Beam 
m is const. 

Uniform preformed  
plasma 

5. Good simulation is required to predict the 
beam dynamics in the real configuration 

-  Fermilab: WARP PIC code  
-  BNL: SPACE code with molecular 

processes 

Kb =
2re
γ 3β 2

N
2πσ z

2. Electron column expands 
slightly, making E-field inside 

the beam banish 
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Time constant of charge neutralization 
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agreement 
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Beam-Plasma interaction 
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• No RF for longitudinal focusing 
• No dispersion magnet 
• A straight 5-T solenoid  
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Beam-plasma interaction in gas-filled RF 
cavities 
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No plasma      Preformed plasma    WARP added 

            

Less spread in bunch tail due to charge neutralization 

Edge effect from uniform cylinder 

X	Vs	Z	 X	Vs	Z	 X	Vs	Z	
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Beam-plasma interaction study in non-
WARP simulation 
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Vacuum 
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Vacuum 
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Vacuum 
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Beam-plasma interaction study in non-
WARP simulation 
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150 ps 

In a dense H2 gas 
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Beam-plasma interaction study in non-
WARP simulation 
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150 ps 200 ps 

In a dense H2 gas 
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Beam-plasma interaction study in non-
WARP simulation 
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150 ps 200 ps 250 ps 

In a dense H2 gas 
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Beam-plasma interaction study in non-
WARP simulation 
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150 ps 200 ps 250 ps 300 ps 

In a dense H2 gas 
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Summary of HCC Design Effort 
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•  Verified helical cooling theory#
– Understood linear dynamics#
– Studied non-linear dynamics (in progress)#
– Demonstrated ability to tune the cooling lattice#

•  Enhanced longitudinal cooling to overcome the field limit#
•  High pressure RF cavities#

– Oxygen doped high pressure RF cavities tested#
– Plasma was modeled and compared to measurement #
– High pressure RF HCC should work#

•  Beam-plasma interaction#
– Plasma lens effect may increase beam focusing#
– Requires re-evaluating cooling models/simulations (in 

progress)#


