

Cooling and Phase Space Manipulation of Nonneutral Plasmas for Antihydrogen Synthesis

Jonathan Wurtele U.C. Berkeley and LBNL

ALPHA Collaboration 16 institutions and roughly 40 co-authors

G.B. Andresen, M.D. Ashkezari, M. Baquero-Ruiz, W. Bertsche, P.D. Bowe, E. Butler, C.L. Cesar, S. Chapman, M. Charlton A. Deller, S. Eriksson, L. Evans, J. Fajans, T. Friesen, M.C. Fujiwara, D.R. Gill, A. Gutierrez, J.S. Hangst, W.N. Hardy, R.S. Hayano, M.E. Hayden A.J. Humphries, R. Hydomako, S. Jonsel, L. Kurchaninov, N. Madsen, S. Menary, P. Nolan, K. Olchanski, A. Olin, A. Povilus, P. Pusa F. Robicheaux, E. Sarid, D.M. Silveira C. So, R.I. Thompson, D.P. van der Werf, J. S. Wurtele, Y. Yamazaki and A. Zhmoginov

US Work supported by: DOE/NSF Partnership in Basic Plasma Science 2005-2015 DOE Office of High Energy Physics (Accelerator Science) 2011-2012 LBNL LDRD

The Cooling of Particle Beams

Andrew M. Sessler

*Center for Beam Physics Lawrence Berkeley Laboratory Berkeley, CA 94720

Abstract. A review is given of the various methods which can be employed for cooling particle beams. These methods include radiation damping, stimulated radiation damping ionization cooling, stochastic cooling, electron cooling, laser cooling, and laser cooling with beam coupling. Laser cooling has provided beams of the lowest temperatures, namely 1 mK, but only for ions and only for the longitudinal temperature. Recent theoretical work has suggested how laser cooling, with the coupling of beam motion, can be used to reduce the ion beam temperature in all three directions. The majority of this paper is devoted to describing laser cooling and laser cooling with beam coupling.

Overview

Goal: Test the foundations of physics through precision Antihydrogen measurements

1S-2S spectroscopy Hyperfine spectroscopy Charge neutrality Gravitational force (Einstein Equivalence Principle) The ALPHA Collaboration: Founded in 2005; 40-50 members 14-15 institutions in 8 countries

- Experiment at the Antiproton Decelerator (AD) Facility at CERN

ATRAP apparatus broadly similar.

Neutral Trap Depth = 10

Phase Space Manipulations

- Radiative Cooling: Electrons and Positrons
- Sympathetic Cooling: antiprotons cool on electrons [ATRAP]
- Evaporative cooling: Prepare low temperature bunches [ALPHA PRL 2010],
- Buffer gas slowing: Surko-style positron trapping.
- Microwave mode excitation: Measure plasma parameters
- Species separation (heats): E-kick. Remove electrons from antiproton. Cutting (number reduction).
- Species mixing (heats): Autoresonance used to drive antiprotons into positrons. [ALPHA PoP 2013]
- Rotating wall compression (heats): Apply torque to compress plasma. [ALPHA, PRL 2011] USCD pioneered..

 Cavity-enhanced radiative cooling: CERES experiment underway at Berkeley in Fajans laboratory

pbar catching trap

mixing trap

e⁺ catching trap

Inner solenoid 27 enhance field for pbar capture and cooling

Si vertex detector

registers energy deposited by muon 3 layers of 8-10-12 modules, 2 sets on axis, orthogonal Si strps on each module

Mirror coils

axial confinement for Hbar 1.2 T peak on axis

Octopole magnet

radial confinement for Hbar 1.5 T on electrode wall

Detector triggered starts:recording signals from Si strips

Phase Space Manipulations of antihydrogen

- Stochastic Acceleration: Bound on antihydrogen charge [proposed NJP 2014. Experiment performed and paper in works, ALPHA 2015]
- Laser Cooling: Future
- Adiabatic Cooling: Future
- Atomic fountain and interferometer: Precision gravity—requires advanced vertical apparatus [PRL, 2014]. Far future.

Antihydrogen Trapping and Manipulation

LETTER

doi:10.1038/nature09610

ARTICLES

PUBLISHED ONLINE: XX MONTH XXXX | DOI: 10.1038/NPHYS2025

Trapped antihydrogen

G. B. Andresen¹, M. D. Ashkezari², M. Baquero-Ruiz³, W. Bertsche⁴, P. D. Bowe¹, E. Butler⁴, C. L. Cesar⁵, S. Chapman³, M. Charlton⁴, A. Deller⁴, S. Eriksson⁴, J. Fajans^{3,6}, T. Friesen⁷, M. C. Fujiwara^{8,7}, D. R. Gill⁸, A. Gutierrez⁹, J. S. Hangst¹, W. N. Hardy⁹, M. E. Hayden², A. J. Humphries⁴, R. Hydomako⁷, M. J. Jenkins⁴, S. Jonsell¹⁰, L. V. Jørgensen⁴, L. Kurchaninov⁸, N. Madsen⁴, S. Menary¹¹, P. Nolan¹², K. Olchansk¹⁵, A. Olin⁸, A. Povilus³, P. Pusal²⁷, F. Robicheaux¹³, E. Sarid¹⁴, S. Seif el Nasr⁹, D. M. Silveira¹⁵, C. So³, J. W. Storey⁸[†], R. I. Thompson⁷, D. P. van der Wert⁴, J. S. Wurtele^{3,6} & Y. Yamazaki^{15,16}

Confinement of antihydrogen for 1,000 seconds

The ALPHA Collaboration

nature

physics

Atoms made of a particle and an antiparticle are unstable, usually surviving less than a microsecond. Antihydrogen, made entirely of antiparticles, is believed to be stable, and it is this longevity that holds the promise of precision studies of matter antiparticle grant with the present of the manufactor of the stable stable stable.

LETTER

Resonant quantum transitions in trapped antihydrogen atoms

$$v_{\bar{H}}^{hfs} = 1.42 \pm .10 \ GHz$$

- •Positron spin flip measurement
- •Shows that it is possible to do physics
- with few atoms
- ...would like x10 (or higher) trapping rate and laser cooling

Effect of Gravity on the Anti-Atom Trapping Well

ALPHA, Description and first application of a new technique to measure the gravitational mass of antihydrogen, Nature Comm 4, 1785 (2013).

Potential Well After Magnet Shutdown

M_G/M< 110 (Normal gravity) M_G/M> -65 (Antigravity) [ALPHA Nature Comm. 2012]

M_G/M=100

Can we do better?

- Much easier in a vertical trap.
 - Laser cooling not necessary, though it helps.
 - Slow down the magnet turnoff by a factor of ten.
 - Turnoff the mirror coils only.
 - 1% measurement possible.

Antihydrogen Charge

- Normal matter atoms are known to be charge neutral to remarkable precision: on the order of $10^{-21}e$.
- CPT and quantum anomaly cancellation demand that antihydrogen be charge neutral to a similar level.
- How well is the charge of antihydrogen known?
 - Techniques used for normal matter atoms are inapplicable.
 - Only prior limits on antihydrogen are at the $10^{-2}e$ level.
 - Using superposition:
 - Charge of the antiproton is known to $7 \times 10^{-10} e$.
 - Charge of the positron is known to $2.5 \times 10^{-8}e$.
 - Can we be sure that superposition is valid? Almost surely...

Greenland, P. T. <u>Antimatter</u>, Contemporary Physics 38, 181{203 (1997).

Anti-Atom Annihilation Position vs. Anti-Atom Charge

Antihydrogen Charge

• By searching for the deflection of antihydrogen atoms by an electric field, we can set a limit on the antihydrogen charge of (-1.31.1)10⁻⁸e (one sigma).

ALPHA, <u>An experimental limit on the charge of antihydrogen</u>, essentially accepted by Nature Comm., (2014).

M. Baquero-Ruiz, W. Bertsche, A.E. Charman, J. Fajans, A. Little, A. Povilus, E. Sarid, D.M. Silveira, C. So, T.D. Tharp, D.P. van der Werf, J.S. Wurtele, Z. Vendeiro, A.I. Zhmoginov

Improved Antihydrogen Charge Bound Using Stochastic Fields

• Stochastic acceleration (Fermi acceleration) can eject charged anti-atoms from the trap.

• Using stochastic acceleration, we expect that we can determine the charge to the $10^{-12}e$ level.

$$\begin{split} \Delta E_{\overline{H}} &\sim Q e \Delta \Phi_{kick} N_{kick}^{1/2} \\ \Delta E_{\overline{H}} &\leq U_{trap} \\ Q &\leq \frac{U_{trap}}{e \Delta \Phi} \sqrt{\frac{1}{N}} \end{split}$$

M. Baquero-Ruiz, A.E. Charman, J. Fajans, A. Little, A. Povilus, F. Robicheaux, J.S. Wurtele, A.I. Zhmoginov, Measuring the electric charge of antihydrogen by stochastic acceleration, NJP (2014).

The Cold Electron Research (CERES) Apparatus at UC Berkeley

- Cryogenic (<15K) environment
 - **High-Q** (~10000) cavity
 - Strong magnetic field (0.5 to 6T)
- **Electrostatic confining** electrodes

Diagnostics:

- Low-T (70K) MCP/Phosphor Imaging Assembly
- Current pickups on electrode leads for detection of image motion
- Quiet, Amplified Charge Collectors
 - Fast High-Gain Phosphor/ Photodetector

Fajans Lab, courtersy A. Povilus (now @LLNL)

Cyclotron-Cavity Mode Cooling Scheme

Collaboration of Fajans/Wurtele groups at UCB and W. Hardy group at UBC

Cavity Enhanced Cooling (Purcell Effect)

$$\frac{1}{\tau_c} = \frac{P_r}{KE} = \frac{\frac{e^2 a^2}{6\pi\epsilon_0 c^3}}{(1/2)mv^2} = \frac{e^4 E}{3\pi\epsilon_0 c^3}$$

$$\frac{1}{\tau_{cavity}} \sim \frac{\tau_{c}}{\tau_{c}}$$

O

1

Calculated Emission Rate for Sparse Mode Density Cavity

Physics issues:

Geometric enhancement & overlap Mode separation Finite longitudinal motion Large N bottleneck (too many photons) Plasma to single particle Quantum to classical?

Demonstrated Enhanced Cooling in Bulge Cavity (VERY PRELIMINARY)

ALPHA-II Apparatus

On advising students

"Go to Building 47 and find something interesting"

- Students should not have projects too well defined.
- A surprising number of future CEBAF builders and leaders were in Building 47 at that time. (Joe B., Geoff, Swapan. Christoff and Hermann were nearby.)

Andy on doing physics: Theory with a purpose.

"Don't hide behind mathematics"

"Say it in words. And, a good title helps sell things." Here are some of Andy's:

- "Optical Guiding";
- "Beam Conditioner";
- "Adiabatic focuser";
- "Two-beam accelerator";

"I'm too smart—I can prove anything!"

- Proof by intimidation
- You have to stand up for yourself

Andy on doing physics (2)

"Physics is a contact sport"

• Micro-aggressions galore!!! Of an intellectual variety.

After losing a physics argument:

"First you don't believe something, then you don't understand it, then you think you thought of it yourself."

As LBL Lab Director

"I went downtown and any building I saw painted camouflage brown" "I took down half the traffic signs." (try that now!) "Only the squirrels know this is edible" (on picking up a berry from the path and consuming it) "I went to protest at the Soviet consulate" (On taking an afternoon off)

Andy also moved LBL from its HEP focus to become a fully multidisciplinary laboratory with a strong environmental focus—that story is for a different forum.

Andy on Life

"I've had a good run"

"Your achievements scale as the square root of your expectations."

"As with my students, I recommend to my children following my path: have an early family, raise your children to be good people and, also, to have a thirst for knowledge, enjoy the outdoors, travel a lot, save money for later years, but try not to get divorced."

For a serious biography of Andy's numerous contributions to physics and society see http://www.nasonline.org/publications/biographical-memoirs/memoir-pdfs/sessler-andrew.pdf Some of Andy's personal comments on life, and most well-known papers are here: <u>http://raman.physics.berkeley.edu/asessler/Site/Welcome.html</u>

"There's never a time not to do physics"

Lawrence Berkeley National Laboratory With 44 new downloads, Andrew Sessler was the most downloaded researcher from their department last week Andrew Sessler Lawrence Berkeley National Laborator Accelerator and Fusion Research Divis 254 PUBLICATIONS 1,848 CITATIONS MESSAGE

Researchgate 9/2015

Andy with Berkeley friends

Fajans and Wurtele Groups, Berkeley

Pendulum with a Fixed Frequency Drive

Pendulum with a Swept Frequency Drive

Autoresonantly Driven Pendulum

Autoresonant mixing

Autoresonant Mixing of antiprotons

~10,000 antihydrogen created per attempt, ~1 with KE<.5K

C. So, Ph.D. 2014

ALPHA, <u>Autoresonant excitation of antiproton plasmas</u>, in press Phys. Rev. Lett., (2011). I. Barth, L. Friedland, E. Sarid, and A. G. Shagalov, <u>Autoresonant Transition in the Presence of Noise and Self-Fields</u>, Phys. Rev. Lett., 103, 155001 (2009).

Antihydrogen Fountain

- Let anti-atoms evaporate over a magnetic barrier.
 - Substantial parallel cooling results.

An anti-atom with a velocity of 3m/s upwards will continue upwards 46cm.

A.I. Zhmoginov

Interferometric Measurements

- More accurate gravity measurements can be made with a laser atom interferometer. This is for the far future.
 - Initial results to 1%
 - Eventual result to perhaps 0.0001%.

P. Hamilton, et al ,, Antimatter interferometry for gravity measurements, Phys. Rev. Lett. 112 121102 (2014).

New ALPHA-II Apparatus

Technique: Autoresonant Control

- Synchrotron: Vexler, MckMillan, 1945.
- Diocotron modes in nonneutral plasmas
- Nonlinear phase space structures in nonneutral plasmas
- Mixing of antiprotons and positrons
- Spectrometer for residual gas identification.
- Josephson Junction resonators
- Robust laser wakefield accelerator
- Spatio-temporal nonlinear wave control, Raman and Brillouin interactions with plasma gradients
- Many other fluid and wave systems
- Advantage: Robust to jitter and parameter uncertainty, threshold behavior, works at low drive power.

Antiparticles

1928-1931 - Dirac: Existence of the positron.

P. Dirac

"A hole, if there were one, would be a new kind of particle, unknown to experimental physics, having the same mass and opposite charge to an electron. We may call such a particle an anti-electron."

P. A. M. Dirac, Quantised Singularities in the Electromagnetic Field, Proc. R. Soc. Lond. A 133 p60 (1931).