

Operated by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Progress of Front End Design and FOFO Snake

David Neuffer, Y. Alexahin FNAL

Outline

Front end design

- Baseline configuration
- Buncher Phase Rotator
- Cooler options

HFOFO "Snake" properties

- Design Concepts
- Example (IBS)
- Simulation

Variations

– cold muon source

Front End and Initial Cooling

From target to end of initial cooling

- capture and bunch $\pi \rightarrow \mu$; initial cooling for downstream
- captures & cools both signs (μ^+ and μ^-)
- Same system can be used for both v factory and $\mu^+-\mu^-$ collider

🚰 Fermilab

IDS Neutrino Factory Buncher and φ-E Rotator

- Drift $(\pi \rightarrow \mu)$ ٠
- "Adiabatically" bunch beam first (weak 320 to 232 MHz rf)
- **Φ-E rotate bunches align bunches to ~equal energies** •
 - 232 to 202 MHz, 12MV/m
- Cool beam 201.25MHz
- Captures and Cools both μ^+ and μ^-

COOLING LATTICE

Buncher/Rotator Example

– f_{RF} : 490 → 365MHz

- LiH absorbers

325 MHz – much more affordable than 200MHz

more compact, ~1/2 rf power

matches present/future power sources/ frequencies-ILC, PIPII

but more bunches in bunch train for collider $(~12 \rightarrow ~21)$ **\ddagger Fermilab**

Problem: Beam Losses & Activation

325 "Collider " w Chicane/

Cooling Section – "2-D" cooling only

- Baseline Initial cooling system
 - from IDS Neutrino Factory cooling
 - Consists of rf & LiH absorbers & Alternating Solenoid focusing
- Cools transverse emittance
 - ~⊠_t : 0.016→0.0065 m
 - [¥]_L: 0.04→~0.03 m
 - no longitudinal cooling (scraping)
- ~0.1µ / 8GeV p within acceptance
 - most beam outside acceptance scraped away

Vacuum rf or Gas-filled rf?

- Initial design was for vacuum rf within $B = \sim 2T$ solenoids
 - rf gradient limited within magnetic fields (?)
 - gas-filled rf does not breakdown
 - (but has plasma loading effect)
- Front end can have gas-filled rf
 - same performance as with vacuum rf
 - need a bit higher gradient to compensate energy loss in gas
 - With higher density gas and higher gradient
 - can have some cooling in buncher/rotator
 - better performance
- Would like to increase B \rightarrow 3T

"FOFO Snake" initial cooling [Y. Alexahin et al.]

- Motivation
 - Obtain front end 6-D cooling
 - equal cooling in x and y
 - cyclotron and drift modes
 - For both $\mu^{\scriptscriptstyle +}$ and $\mu^{\scriptscriptstyle -}$
 - Dispersion+wedge would only cool one sign ...
 - (we thought ...)

coils: Rin=42cm, Rout=60cm, L=30cm; RF: f=325MHz, L=2×25cm; LiH wedges

- Principles
 - Alternating solenoid cooling
 - resonance dispersion
 - tilts in solenoids

$$D_x = \frac{d x_{co}}{d\delta_p} \approx -\pi Q'_x x_{co} \cot(\pi Q_x)$$

- Longitudinal cooling from path length (E_{μ})

Basic Principles of "FOFO Snake"

- Alternating Solenoid field
 - Equal cooling of transverse modes
 - cyclotron/drift modes exchange at each flip
- Resonance Dispersion generation
 - solenoid tilts generate helical orbit/dispersion
 - $x_{co} \sim 1/sin (\pi Q_x)$;

$$D_x = \frac{d x_{co}}{d\delta_p^x} \approx -\pi Q_x' x_{co} \cot(\pi Q_x)$$

- larger compaction factor if tune ~ N+δ
- Longitudinal cooling in flat absorbers due to D'
 - path length (δ_p)

initially without wedge absorbers

Baseline 325 Mhz cooler example

- 6 cell period
 - 4.2m, B_{max}=3.7T
 - β_t ~0.6m
 - 325MHz rf, 25 MV/m
 - 2.5 mrad Tilts
- Gas filled (1/5 Liquid H₂ density)
 - (slabs could also be used)
 - with LiH wedges

coils: Rin=42cm, Rout=60cm, L=30cm; RF: f=325MHz, L=2×25cm; LiH wedges

FODO snake properties

- 2.5 mrad tilts oriented at
- $\phi_k = \frac{4\pi}{3}, 0, \frac{2\pi}{3}, \frac{4\pi}{3}, 0, \frac{2\pi}{3}$ from vertical
- Wedges follow similar rotation
 - Are placed to cool both signs: μ⁺ and μ⁻
- Eigen values, equilibrium ε

Mode	-	=	=
Tune	1.2271 + 0.0100 i	1.2375 + 0.0036 i	0.1886 + 0.0049 i
Emittance (mm)	2.28	6.13	1.93

- not balanced in x, y (add quad)
- Total cooling channel is
 - ~30 cells (126 m)

coils: Rin=42cm, Rout=60cm, L=30cm; RF: f=325MHz, L=2×25cm; LiH wedges

Dispersion and two vertical wedge absorbers: the left works for μ^{+} while the right works for μ^{-}

Matching from upstream Rotator

Transverse Optics match
 – constant solenoid to ASOL

Magnetic field in the transition area (left) and β -function for constant momentum (right)

Helical Orbit match

- Longitudinal momentum match
 - gradual deceleration

 phases readjusted to compensate for amplitude/momentum correlation

Cooling & Transmission (G4BL)

Normalized emittances (cm) from Gaussian fit: μ^+ - solid lines, μ^- - dashed lines.

Transmission as a ratio of the number of muons in the Gaussian core: red solid line - μ^+ , blue dashed line - μ^- .

Final/Initial values (Gaussian fit):

	N ^(total)	N ^{(150<p<360)< sup=""></p<360)<>}	N ^(core)	p ^(cnt) , MeV/c		ε _{mN} , cm		ε _{6D} , cm ³
μ+	5378/11755	5167/7998	5010/7329	208.2/248.0	0.19/1.19	0.36/2.19	0.76/2.38	0.051/6.22
μ-	5896/12396	5743/9020	5499/8248	207.7/248.8	0.16/1.22	0.46/2.10	0.72/2.19	0.051/5.59

Results and discussion

- Beam phase space
 - before (blue)
 - after (red)

Longitudinal distributions

 momentum spread reduced by factor of ~2

Comparison to 2-D cooling

- Cools in 3-D
 - − $ε_1$: 2.2→0.4 cm ; $ε_2$: 1.2→0.2 cm; $ε_L$: 2.4→0.7 cm
 - ε_t: 1.7 → 0.6 (2D)
- More Cooling (than 2-D baseline)
 - but longer channel & stronger focusing
 - up to 120m; B_{max} 2.8 \rightarrow 3.7 T
- Initial Acceptance a bit less than 2-D cooling channel
 ~10%
- Better match to downstream systems
 - from longitudinal cooling ...

Front End with Helical FOFO cooler preferred

3 Fermilah

9/30/16

- Smaller momentum spread bunches will fit into downstream components more easily
 - Acceleration transition $325 \rightarrow 650$ MHz can occur earlier
 - at ~1 GeV/c for nu-Factory → "NuMAX" scenario
 - Cooling transition $325 \rightarrow 650$ for collider sooner ...
 - losses reduced; separation of μ^+ and μ^- easier ...
- Deceleration to a lower energy muon beam (mu2e?) easier, with fewer losses

To Do

- Write-up current status for JINST volume
- Variations / Improvements -- ?
- Scale back to low-energy applications
 - smaller, lower field system capturing at 150 MeV/c
 - 50m →25m
 - → 100 MeV/c

Summary

Low-E capture

- Capture at low momentum
 - prepare beam for low-E μ experiment
- Somewhat scaled back version of front end
 - 30.4m drift
 - shorter buncher /rotator
 - 12m / 13.5m
 - 0→15 MV/m, 15 MV/m
 - vacuum rf

• Parameters

•

- 150 MeV/c ... 100 MeV/c reference particles
- 77.8 // 39.8 MeV
- Bunch to 150 MeV/c

simulation of low-E buncher

Used Ding initial beam

- initial beam cut off at ~70 MeV/c
 - 21 MeV kinetic energy
- bunch train formed

- longitudinal antidamping
 - g_L =~-0.5
- B=2T , 2cm
- more used to separate captured from uncaptured beam
- ~0.05 μ/p within acceptance ??
 - not sure what acceptance criteria to use

