

Sept. 28 - Oct. 2, 2015 Jefferson Lab Newport News, Virginia USA A Jefferson Lab

Status of the NICA project at JINR Dubna G. Trubnikov on behalf of team

Physics

- Bulk properties, EOS particle yields & spectra, ratios, femtoscopy, flow
- In-Medium modification of hadron properties
- **Deconfinement (chiral), phase transition at high** ρ_B enhanced strangeness production
- QCD Critical Point event-by-event fluctuations & correlations
- Strangeness in nuclear matter hypernuclei

QCD matter at NICA :

- Highest net baryon density
- Energy range covers onset of deconfinement
- Complementary to the RHIC/BES, FAIR and CERN experimental programs

Freeze-out conditions

NICA basic parameters:

 $\sqrt{s_{NN}} = 4 - 11 \text{ GeV}; beams from p to Au @ L ~ 10^{27} \text{ cm}^{-2} \text{ c}^{-1} (Au),$ $\sqrt{s_{NN}} = 6 - 26 \text{ GeV}; p^{\uparrow} \text{ and } d^{\uparrow} beams @ L ~ 10^{32} \text{ cm}^{-2} \text{ c}^{-1}$

The NICA accelerator facility:

- cryogenic heavy ion source KRION of ESIS type + source of polarized protons and deuterons,
- modernized linac LU-20 (existing) + a new heavy ion linear accelerator (HILac)
- a new superconducting Booster synchrotron + existing SC HI ring of Nuclotron
- collider: two new superconducting storage rings with two interaction points

STAR/PHENIX @ BNL/RHIC.

designed for high energy research ($\sqrt{s_{NN}} = 20-200 \text{ GeV}$), low luminosity for LES program L<10²⁶ cm⁻²s⁻¹ for Au⁷⁹⁺

NA61 @ CERN/SPS.

MPD @ NICA.

Collider: $\sqrt{s_{NN}}$ = 4-11 GeV (~100 MeV/u energy step, variety of ions). L~10²⁷ cm⁻²s⁻¹ for Au⁷⁹⁺

Fixed target, non-uniform acceptance, few energies (10,20,30,40,80,160A GeV)

CBM @ FAIR/SIS-100/300 Fixed target, $\sqrt{s_{NN}}$ = 2-5(9) GeV, high luminosity

Present and future HI experiments/machines

NICA injection complex (ion sources + HILac)

Source assembled in 2013 now is commissioned to achieve 10¹⁰ ppp. First beam run in beg.2016

Heavy Ion Linac delivered to JINR. Commissioning scheduled for Oct'15

Heavy ion source: Krion-6T ESIS

B= 5.4T reached. Test Au beams produced: - Au³⁰⁺ \div Au32³²⁺, 610⁸, T_{ioniz}= 20 ms for - Au³²⁺ -> repetition rate 50 Hz. - ion beams Au⁵¹⁺ \div Au⁵⁴⁺ are produced.

NICA light ion injector (LU-20): RFQ linac, 150 keV

Particles	р	¹⁹⁷ Au ³¹⁺	
Injection energy, MeV/u	3		
Maximum energy, GeV/u	6.4	0.58	
Magnetic rigidity, T·m	1.55 ÷ 25.0		
Circumference, m	211.2		

Fold symmetry	4
# of DFO lattice cells per arc	6
Number of straight sections	4
Length of straight sections, m	7
Betatron tunes	4.8/4.85
Maximal energy, MeV/u	660

BITH NICA Booster ring

Electron cooling system for booster

Electron energy, keV le, A Accuracy and adjustment $\Delta E/E$ $\leq 1.10^{-5}$ Current stability, $\Delta I/I$ $\leq 1.10^{-4}$ Length of system/solenoid, m 6.2/2.8 $\leq 3.10^{-5}$ e-current losses, $\delta I/I$ $0,1 \div 0,2$ Bfield, T $\leq 3.10^{-5}$ $\Delta B/B$ @ main solenoid T transverse e, eV \leq 0,3 Ion trajectory: $(dX, mm \le 1, 0, dTheta, mrad \le 1, 0)$

Electron Cooling for:

- Beam adjustment for effective injection to Nuclotron;
- Accumulation at injection/multiple injection (up to 4e9 ipp);
 - Beam adjustment for applied research;

Booster systems: progress is going

Booster RF system and RF test bench

Serial production of cryostats and thermal shields – is in final stage. Serial production of dipole and quadrupole magnets started in Dec'2014 (2 y's)

First prototype of Booster PU-station tested in Bulgaria in Sept'15. Series starts fast

New low energy (4-11 GeV/u) collider with extremely high luminosity L=1e27 Scientific leader: Igor MESHKOV Fruitful collaboration between JINR and FNAL, BNL, GSI, FZJ, BINP, CERN, INR RAS For similar round-shape bunches colliding at zero angle:

$$L = \frac{nbN_b^2}{4\pi\varepsilon\beta^*} frev f\left(\frac{\sigma_s}{\beta^*}\right)$$
$$f\left(\frac{\sigma_s}{\beta^*}\right) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{\exp(-u^2)du}{\left[1 + \left(\frac{u\sigma_s}{\beta^*}\right)^2\right]}$$

- to increase number of bunches -> parasitic collisions;
- to increase bunch current -> coherent instability;
- to decrease emittance (bunch size) -> incoherent tune shift -> resonanses;
- to decrease β^* -> severe demands to FF QL, chromaticity;
- to increase rev. frequency -> to decrease circumference (no space for equipment)
- to have optimal bunch length ("hour-glass" effect).

Parameters of the Au-Au bunches

Circumference of the ring, m	503.04			
Number of bunches	22			
R.m.s. bunch length, m	0.6			
β -function in IP, m	0.35			
Betatron frequinces, Q_x/Q_v	9.44/9.44			
Chromaticities, Q'_{x}/Q'_{y}	-33/-28			
Acceptance of the ring, π mm·mrad	40			
Momentum acceptance, Δp/p	±0.010			
Critical energy factor , γtr	7.088			
Energy of ₇₉ Au, GeV/u	1.0 3.0 4.			
Number of ions per bunch	2.0·10 ⁸	2.4·10 ⁹	2.3·10 ⁹	
R.m.s. momentum spread, Δp/p, 10 ⁻³	0.55	1.15	1.5	
H/V R.m.s. emittance, π mm·mrad	1.1/0.95	1.1/0.85	1.1/0.75	
Luminosity, cm ⁻² s ⁻¹	0.6·10 ²⁵	1.0·10 ²⁷	1.0·10 ²⁷	
IBS growth time, s	160	460	1800	
Tune shift, ΔQ _{total} =ΔQ _{SC} +2ξ	-0.050 -0.037 -0.011			

NICA: configuration of the Collider for Heavy lon mode

Au(+79) ion mode

Stage 1: Cooling and stacking with RF1 barrier voltage (5kV). Accumulation efficiency ~ 95%, about 110 - 120 injection pulses (55-60 to each ring) every 5 sec. Total accumulation time ~ 10 min. dP/p is limited by microwave instability.

<u>Stages 2-3.</u> Formation of the short ion bunches in presence of cooling, <u>RF-2 (100 kV, 4 resonators) + RF-3 (1MV, 8 resonators).</u>

From coasting beam => to 22nd harmonics = > 66th harmonics

V_{RF} & N_{ion}, arb. units

Phase, arb. units

Stage 1: Cooling and stacking with RF1 barrier voltage (5kV). Accumulation efficiency ~ 95%, about 110 - 120 injection pulses (55-60 to each ring) every 5 sec. Total accumulation time ~ 10 min. dP/p is limited by microwave instability.

Stages 2-3. Formation of the short ion bunches in presence of cooling, <u>RF-2 (100 kV, 4 resonators) + RF-3 (1MV, 8 resonators).</u>

Stage 1: Cooling and stacking with RF1 barrier voltage (5kV). Accumulation efficiency ~ 95%, about 110 - 120 injection pulses (55-60 to each ring) every 5 sec. Total accumulation time ~ 10 min. dP/p is limited by microwave instability.

<u>Stages 2-3.</u> Formation of the short ion bunches in presence of cooling, <u>RF-2 (100 kV, 4 resonators) + RF-3 (1MV, 8 resonators).</u>

Stage 1: Cooling and stacking with RF1 barrier voltage (5kV). Accumulation efficiency ~ 95%, about 110 - 120 injection pulses (55-60 to each ring) every 5 sec. Total accumulation time ~ 10 min. dP/p is limited by microwave instability.

<u>Stages 2-3.</u> Formation of the short ion bunches in presence of cooling, <u>RF-2 (100 kV, 4 resonators) + RF-3 (1MV, 8 resonators).</u>

Stage 1: Cooling and stacking with RF1 barrier voltage (5kV). Accumulation efficiency ~ 95%, about 110 - 120 injection pulses (55-60 to each ring) every 5 sec. Total accumulation time ~ 10 min. dP/p is limited by microwave instability.

<u>Stages 2-3.</u> Formation of the short ion bunches in presence of cooling, <u>RF-2 (100 kV, 4 resonators) + RF-3 (1MV, 8 resonators).</u>

Stage 1: Cooling and stacking with RF1 barrier voltage (5kV). Accumulation efficiency ~ 95%, about 110 - 120 injection pulses (55-60 to each ring) every 5 sec. Total accumulation time ~ 10 min. dP/p is limited by microwave instability.

<u>Stages 2-3.</u> Formation of the short ion bunches in presence of cooling, <u>RF-2 (100 kV, 4 resonators) + RF-3 (1MV, 8 resonators).</u>

Two operation regimes Electron and stochastic cooling 10 application! 10 L(E_i) lon/bunch, 1e27 cm⁻²·s⁻¹ **Emittance reduction with 1E9** 1.0 1.0 energy: Nopt Equilibrium beam: emittance vs E_{ion}, 0.1 max 0.1 'opt $\pi \cdot \mathbf{mm} \cdot \mathbf{mrad}$.2 max 0.01 0.01 2 3 4 0.8 lon energy, GeV/u **E**opt Space charge IBS 0.4 8_{max} dominated dominated • regimes 0 3 2 4 1

Ion energy, GeV/u

Strategy to achieve luminosity

1. Maximal r.m.s. bunch length is chosen equal to **0.6m** in order to have the "luminosity concentration" at Inner Tracker (IT) of MPD

2. Maximal peak luminosity (limited by Lasslett tune shift) is achieved at maximal emittance: $\mathcal{E}_{rms} = 1.1 \pi \cdot mm \cdot mrad$ (radius = 1/6 aperture)

3. The ratio between Horizontal, Vertical emittances and dP/P is defined from the equillibrium of IBS rates

- 4. Maximal number of particles in bunch is limited by tune shift ≤ 0.05
- 5. Number of bunches = 22 -> to cancel parasitic collisions

6. RF multiplicity = 3 -> separatrix area is by 25 times exceeds longitudinal emitance

- 1. Effective scheme of accumulation and bunch formation
- 2. Beam lifetime (due to scattering on residual atoms) ~ 10 hours
- 3. "Head-tail" and multibunch instabilities are supressed by feed-back systems
- 4. Supression of the emitance growth (due to IBS) by beam cooling systems: 1 3 GeV/u with electron cooling
 - 3 4.5 GeV/u with 3D stochastic cooling (longitudinal Palmer method)

Start-up configuration

- No electron cooling
- No feed-back systems (as soon as beam intensity decreased)
- "Light" RF-2 composition: 4 -> 2 resonators per ring)
- No RF-3 (bunch length = 1.2m, 50 kV, 8 -> 0 resonators per ring)
- No transverse stochastic cooling (1 channel instead of 3 per ring)

To achieve luminosity (Au-Au):

- Bunch accumulation scheme stays the same;
- It is enough only longitudinal cooling (filter cooling easy);
- Expected transverse emittance 0.1÷0.3 π ·mm·mrad

(It is required to increase transverse emittance)

Making 22 bunches with RF-2 -> bunch length \leq 1.2m dP/P at 50 kV is 3.5 \div 5.5 \cdot 10⁻⁴ (3 times less than for full NICA)₄

Phase volume stabilization

Long.temperature less than transverse by order of magnitude

IBS leads to 2 effects:

- Pumping of energy from transverse degrees of freedom to longitudinal (relaxation)
- Growth of the 6-dimensional phase volume.

dP/P growth rate much more higher than for emittances At equal emittances: horizontal increases, vertical decreases. $Q_h \approx Q_v - coupled$.

is compensated by vertical "cooling".

When E > 4 GeV/u the equillibrium emittance exceeds acceptance.

At maximal accepted emittance, the growth time ~ 15 hours

Cooling conditions

Heating – cooling equillibrium (Au-Au)

Particle number corresponds to equilibrium between heating and cooling

Luminosity ~ 10^{26} cm⁻²s⁻¹

Heating-cooling growth times: 20 - 140 sec

Luminosity for different ion spices

IBS growth rate is proportional to Z^2/A (the best ion is – deutron :-)

dP/P (at fixed bunch length and RF voltage) ~ sqrt(A/Z).

Optimal energy for stochastic cooling ~ 3.7 GeV/u

	σ _p , 10 ⁻⁴	$\varepsilon, \pi \cdot mm \cdot mrad$	N _b	L
₁₉₇ Au ⁷⁹⁺	4.14	0.805	1.49 ·10 ⁹	3.05·10 ²⁶
124Xe ⁴²⁺	3.8	0.678	2.53·10 ⁹	8.9·10 ²⁶
₈₄ Kr ³⁶⁺	4.28	0.86	3.31·10 ⁹	1.52·10 ²⁷
40Ar ¹⁸⁺	4.39	0.92	6.75·10 ⁹	5.53·10 ²⁷

Heating-cooling growth times $\sim 50 - 200$ sec

What we gain at full-scale configuration?

- 1. Enlargement of energy range thanks to electron cooling
- 2. Luminosity @ 3 ÷ 4.5 ГэВ/н

Stochastic cooling at collider

Design power of amplifiers: 500 W per channel, Kicker ~ 2 m

Design of the kicker allows to connect in parallel groups of electrodes to their amplifiers, summarizing total power going to the beam

Kicker of the Nuclotron SCS: 16 rings (30 sm) ~ 80 W

Stochastic Cooling System

Ring slot-coupler RF

beam

Coasting

Bunched beam

Stochastic Cooling System installed at Nuclotron - is a prototype for the NICA Collider: W=2-4 HGz, P = up to 60 W Collaboration: JINR – IKP Juelich + CERN

Experimental results (2013): stochastic cooling of the carbon (C6+) beam, E = 2.5 GeV/u

Kicker station

Pick-Up station

Intensity ~ $2 \cdot 10^8$ ions, ~ 2.5 bunches, dP/P_{init} ~ $2 \cdot 10^{-4}$, T_{cool} ~ 60 seconds at 60W. Bunching factor ~ 4.8 (for NICA SUC 7.6, I_{ion} ~ $4 \cdot 10^8$). Estimations: at opt. gain T_{cool} will be ~3 sec

Ultra-high vacuum

High-temp Superconductivity

R&D for Collider and Booster

Curved UHV chambers

Magnetic measurements

Test Facility for SC magnets of NICA and FAIR: excellent collaboration of JINR and Germany (BMBF). Start of operation – December'14. Serial assembly and cold tests (6 arms) – December 2015

Test Facility for SC magnets of NICA and FAIR: excellent collaboration of JINR and Germany (BMBF). Start of operation – December'14. Serial assembly and cold tests (6 arms) – December 2015

MPD observables:

- ✓ Event-by-event fluctuations
- \checkmark Femtoscopy involving π , K, p, Λ
- \checkmark Hadron multiplicities (4- π particle yields : π , K, p, Λ , Ξ , Ω)
- ✓ Collective flow for identified hadron species and resonances
- \checkmark *Electromagnetic probes: e-, \gamma, vector meson decays*
- ✓ Hyper Nuclei & other exotic

Magnet: 0.66T SC solenoid Tracking: TPC, IT, ECT ParticleID: TOF, ECAL, TPC T0, Triggering: FFD Centrality, Event plane: ZDC

MPD Superconducting solenoid, $B_0=0.66$ T: **challenging project** - *to reach high level (~ 10⁻⁴) of magnetic field homogeneity.* Technical *completed*; Survey for contractors: *the cold coil / cryostat; cryogenics.*

RPC deam test at NUCLOTRON: cooperation with SPb, China

Preproduction ECAL prototypes: cooperation with ISM (Kharkiv, Ukraine)

FFD tested with beam: achieved time resolution (38 ps) is better than required

TPC: Cylinder C3 manufactured in Dec' 13

ZDC coverage confirmed: 2.2< $|\eta|$ < 4.8

Readout Electronics developed for TPC, TOF, and ECAL (64 ch,13-bit,65 MSPS)

RPC performance : *required efficiency, rate capability & time resolution (63 ps) are reached*

The CBM - MPD consortium: *development* & *production of STS for* **CBM** (FAIR), **MPD** & **BM@N**

NICA- III (polarized life)

Collision of both: transversally & longitudinally polarized **p** & **d** with energy up to $\sqrt{S} = 27 \text{ GeV}$

- MMT (Drell-Yan) processes •
- J/ψ production processes •

,↑p,d

- Spin effects in inclusive high-pT reactions • $\frac{1}{collider} \frac{1}{collider} \frac{1}$
- Spin effects in 1- and 2-hadron • production processes
- Polarization effects in HI collisions •

outer radius about 150 cm

EM calorimeter

beam pipe

tracking det.

magnet coils

silicon strip det. beam axis

hodoscope

(DC)

detector

hodoscope and tracking

Spin Physics Detector (SPD)

- IT: Silicon or MicroMega
- Straw or Drift chamber
- Cherenkov counter
- EM calorimeter
- Trigger counters
- EndCap detectors

Contract for Working Documentation signed in Aug'14. Ready WDR – mid' 15

NICA Civil Construction

NICA schedule

	2015	2016	2017	2018	2019	2020) 2021	2022	2023
Injection complex									
HI Source									
HI Linac									
Nuclotron									
general development									
extracted channels									
Booster									
Collider									
startup configuration									
design configuration									
BM@N									
I stage									
ll stage									
MPD									
solenoid									
TPC, TOF, Ecal (barrel)									
upgraded end-caps									
Civil engineering									
MPD Hall									
SPD Hall									
collider tunnel									
HEBT Nuclotron-collider									
Cryogenic									
for Booster							[rı	unning
for Collider									

The decommissioning is foreseen after 2040

What NEXT? ... Prospects for NICA at 20 years Horizon

- Experiments on the observation of spontaneous electron-positron pair creation in supercritical Coulomb fields (new 2 compact SC rings with merging bare Uranium beams).

- Mass-spectroscopy of radioactive heavy ion beams in isochronous mode (using booster or collider ring) + measurement of nuclei PDF with colliding/merging electron beam (up to 1 GeV).

- Accelerator physics R&D in:
 - SC linear injector for protons (MW beam as a goal)
 - high-field magnets up to 5T
 - high brightness beams (Extrahigh luminosity mode)
- Detector R&D in:
 - silicon trackers
 - large SC magnets and solenoids using HTSC

Thank you for your attention!

Dynamic Aperture

DA simulation with MAD-X code methods:

Conditions:

- 1. PTC Polymorphic Tracking Code Symplectic integration of particle motion;
- 2. Thin lenses approximation Symplecticity + Space Charge .

 $\sqrt{D(N)} = \sqrt{D_{\infty}} (1 + b/[log(N)]^k)$

RF cavities, Chromaticity sextupoles, Dipole nonlinearities (odd harmonics) – ON N_{part} =10³ – number of particles: N_{turn} =10⁵ – number of turns. Results: Asymptotical DA for $Q_{x,y}$ =9.44/9.44 working point: D_{∞} =100 π mm·mrad (PTC), 60 π mm·mrad (thin lens) > $A_{x,y}$ =40 π mm·mrad

- Maximum in K^+/π^+ ratio is in the NICA energy region,
- Maximum in Λ/π ratio is in the NICA energy region,
- Maximum in the net baryon density is in the NICA energy region,
- Transition from a Baryon dominated system to a Meson dominated one happens in the NICA energy region.