RF Technologies for Ionization Cooling Channels

Ben Freemire IIT COOL'15 October 1, 2015

Ionization Cooling – Background

- Overview of Muon Cooling Dan Kaplan, Monday
- Status, Recent Results and Prospect of the International Muon Ionization Cooling Experiment (MICE) – Chris Rogers, Tuesday
- Affordable, Scalable, and Convincing 6-D Muon Cooling Rol Johnson, Tuesday
- *Study of Helical Cooling Channel for Intense Muon Source –* Katsuya Yonehara, Tuesday
- *Progress of Front End and HFOFO Snake Dave Neuffer, Thursday*
- End-to-End Design of 6D Muon Ionization Cooling Diktys Stratakis, Thursday
- Ionization cooling currently best method for cooling muon beam
- How does this work in practice?

Part I – Technology Development

Ionization Cooling Requirements

- Cornerstones of ionization cooling:
 - Small beta function in cooling material \rightarrow strong focusing
 - Replace lost beam momentum through use of RF cavities
- Result:
 - RF cavities in ~20 T at end of channel (less at beginning)
 - Note: Final cooling not considered

RF Cavities in Magnetic Fields

 Past data suggested external magnetic fields significantly reduce cavity maximum electric field

A Solution

- Filling cavities with gas prevents breakdown
 - Electrons lose energy through collisions with gas molecules
 - Insufficient energy to traverse cavity and form arc
 - Gas species and surface materials have been studied

What About the Beam?

- Won't the beam-induced plasma immediately short the cavity?
 - No!
- Plasma dissipates RF power → "plasma loading"
- Experiment performed to quantify extent of plasma loading
- Plasma processes & dependencies measured
 - Per particle energy dissipation
 - Electron-ion recombination
 - Electron-electronegative molecule attachment
 - Ion-ion "recombination"
- Indicates high pressure gas filled RF cavities feasible for ionization cooling channels

Moving Toward a Prototype

11 -

10

2

- RF cavities operate within high field solenoid • magnet bores in one cooling channel design
 - Superconducting magnets have small bores
- Two options to shrink cavities:
 - 1) Make reentrant
 - 2) Increase dielectric constant
- Option 2 can be investigated with existing high pressure test cell
 - Loss of material dictates power requirements
 - Dielectric strength dictates max. F field
- First high power data collected
- Beam test planned end 2015

How Can We Make Vacuum Cavities Work?

- Cavity length → minimize electron impact energy (All-Seasons Cavity)
- Gridded window \rightarrow allow electron beamlet to exit cavity volume (Pillbox Cavity)
- Electropolishing → minimize field emission (MICE Cavity)

October 1, 2015

201 MHz MICE Cavity

- SRF techniques employed
 - Electropolished
 - Assembled in clean room environment
- Commissioned Be windows to MICE specification (10.3 MV/m) with no sparks in both B=0 & B≠0
- Cavity ran with Be windows up to 14.5 MV/m with $B\neq 0$, limited by RF source power

A New Vacuum Test Cell

- Flexible, systematic study of designs/techniques desirable
 - Build upon lessons learned from past vacuum cavities
- Modular Cavity built to address:
 - Materials
 - Surface treatments
 - Cavity geometry
- Commissioned using Cu end plates in B=0
- B-field run imminent
- Should demonstrate feasibility of vacuum cavities in ionization cooling channels
 October 1, 2015

Bowring et al, IPAC'15, MOAD2

Part II – Technology Application

October 1, 2015

Helical & Hybrid Concepts

- Both channels utilize gas filled cavities at 325 & 650 MHz doped with $\rm O_2$
- Helical:
 - Helix
 - -160 atm H_{2}
 - Continuous H₂
 - Helical solenoids

- Hybrid:
 - Rectilinear
 - 34 (or 100) atm H₂
 - Wedge LH₂ absorbers
 - Tilted solenoids

Summary

- Ionization cooling channels require RF cavities to operate in multitesla magnetic fields
- Achievable gradient in cavities shown to be limited due to magnetic field in past studies
- A solution exists!
 - Fill the cavities with gas
- It is looking increasingly likely that vacuum cavities also work
 - provided suitable design and surface treatment
- Multiple designs for cooling channels based on these technologies exist
 - Achieve emittance requirements for Higgs Factory
 - See Yonehara's and Stratakis's talks

Plasma Loading Estimate

- How much field degradation can we expect from plasma loading?
 - i.e. What *bunch* intensity is acceptable?

• Stored energy completely dissipated:

See Freemire et al NAPAC'13 TUODA1 & Stratakis et al IPAC'15 TUPWI059 for details

	325 MHz			650 MHz		
P (atm)	34	100	160	34	100	160
10 ¹¹ / bunch	14	34	39	3.6	9.3	9.9

• $10^{12} \mu$ / bunch for 325 MHz and $10^{11} \mu$ / bunch for 650 MHz seem reasonable October 1, 2015 B. Freemire - COOL'15

