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Ionization Cooling – Background
● Overview of Muon Cooling – Dan Kaplan, Monday

● Status, Recent Results and Prospect of the International Muon Ionization 
Cooling Experiment (MICE) – Chris Rogers, Tuesday

● Affordable, Scalable, and Convincing 6-D Muon Cooling – Rol Johnson, 
Tuesday

● Study of Helical Cooling Channel for Intense Muon Source – Katsuya 
Yonehara, Tuesday

● Progress of Front End and HFOFO Snake – Dave Neuffer, Thursday

● End-to-End Design of 6D Muon Ionization Cooling – Diktys Stratakis, 
Thursday

● Ionization cooling currently best method for cooling muon beam

● How does this work in practice?
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Part I –
Technology Development
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Ionization Cooling Requirements

● Cornerstones of ionization cooling:
– Small beta function in cooling material → strong 

focusing

– Replace lost beam momentum through use of RF 
cavities

● Result:
– RF cavities in ~20 T at end of channel (less at 

beginning)
● Note:  Final cooling not considered
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RF Cavities in Magnetic Fields
● Past data suggested external magnetic fields significantly reduce cavity maximum 

electric field

D Huang et al, PAC09, TU5PFP032

D Stratakis et al, Nucl. Instr. Meth. A 
620 (2010) 147-154

● Field emission beamlets 
focused by B-field

● Multiple cycles produce 
heating & damage

● How can this be 
circumvented?
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A Solution
● Filling cavities with gas prevents breakdown

– Electrons lose energy through collisions with gas molecules
● Insufficient energy to traverse cavity and form arc

● Gas species and surface materials have been studied

Hydrogen

Hanlet, et al, EPAC 2006, TUPCH147

Copper

Yonehara, et al, PAC 09, TU5PFP020

Maximum cooling channel design
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What About the Beam?
● Won't the beam-induced plasma immediately short the cavity?

– No!

● Plasma dissipates RF power → “plasma loading”

● Experiment performed to quantify extent of plasma loading

● Plasma processes & dependencies measured

M. Chung et al, PRL 111 2013, 184802

– Per particle energy dissipation

– Electron-ion recombination

– Electron-electronegative 
molecule attachment

– Ion-ion “recombination”

● Indicates high pressure gas filled 
RF cavities feasible for ionization 
cooling channels
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Moving Toward a Prototype
● RF cavities operate within high field solenoid 

magnet bores in one cooling channel design

– Superconducting magnets have small bores

● Two options to shrink cavities:

1) Make reentrant

2) Increase dielectric constant

● Option 2 can be investigated 
with existing high pressure test 
cell

– Loss of material dictates 
power requirements

– Dielectric strength dictates 
max. E field

● First high power data collected

● Beam test planned end 2015

Teflon spacers

Alumina insert

Gas
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How Can We Make Vacuum 
Cavities Work?

● More recent results indicate designs/techniques exist to mitigate breakdown in 
vacuum cavities in external magnetic fields

● Cavity length → minimize electron impact energy (All-Seasons Cavity)

● Gridded window → allow electron beamlet to exit cavity volume (Pillbox Cavity)

● Electropolishing → minimize field emission (MICE Cavity)

All-Seasons Cavity

Bowring et al, IPAC'15, MOAD2
Old data

New data

Gridded Windows
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201 MHz MICE Cavity
● SRF techniques employed

– Electropolished

– Assembled in clean room environment

● Commissioned Be windows to MICE specification (10.3 MV/m) with no sparks in both 
B=0 & B≠0

● Cavity ran with Be windows up to 14.5 MV/m with B≠0, limited by RF source power
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A New Vacuum Test Cell
● Flexible, systematic study of designs/techniques desirable

– Build upon lessons learned from past vacuum cavities

● Modular Cavity built to address:

– Materials

– Surface treatments

– Cavity geometry

● Commissioned 
using Cu end 
plates in B=0

● B-field run 
imminent

● Should 
demonstrate 
feasibility of 
vacuum cavities 
in ionization 
cooling channels

Bowring et al, IPAC'15, MOAD2



October 1, 2015 B. Freemire - COOL'15 12

Part II –
Technology Application
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Two Ionization Cooling Channels
TOP VIEW

SIDE VIEW

Hybrid

Helical
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Helical & Hybrid Concepts
● Both channels utilize gas filled cavities at 325 & 

650 MHz doped with O2 

● Helical:
– Helix

– 160 atm H2 

– Continuous H2 

– Helical solenoids

● Hybrid:
– Rectilinear

– 34 (or 100) atm H2 

– Wedge LH2 absorbers

– Tilted solenoids
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Summary
● Ionization cooling channels require RF cavities to operate in multi-

tesla magnetic fields

● Achievable gradient in cavities shown to be limited due to 
magnetic field in past studies

● A solution exists!

– Fill the cavities with gas

● It is looking increasingly likely that vacuum cavities also work

– provided suitable design and surface treatment

● Multiple designs for cooling channels based on these technologies 
exist

– Achieve emittance requirements for Higgs Factory

– See Yonehara's and Stratakis's talks
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Plasma Loading Estimate
● How much field degradation can we expect from plasma loading?

– i.e. What bunch intensity is acceptable?

325 MHz 650 MHz

P (atm) 34 100 160 34 100 160

1011 / bunch 14 34 39 3.6 9.3 9.9

● Stored energy completely dissipated:

325 MHz 650 MHz

Hybrid stored energy

Helical stored energy

● 1012 μ / bunch for 325 MHz and 1011 μ / bunch for 650 MHz seem reasonable

See Freemire et al NAPAC'13 TUODA1 & Stratakis et al IPAC'15 TUPWI059 for details


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

