The SNS Laser Stripping Experiment and its Implications on Beam Accumulation

Sarah M. Cousineau (on behalf of the UT/ORNL/Fermilab laser stripping team)

COOL Workshop Jefferson National Laboratory October 1, 2015

ORNL is managed by UT-Battelle for the US Department of Energy

Achieving High Beam Densities

Liousville's Theorem:

The density of particles in a phase space is constant. (for a Hamiltonian system).

COOL15

Increasing beam density requires non-Liousvillian techniques:

- Increase beam density after injection: Cooling
 - Electron cooling
 - Stochastic cooling
 - Laser cooling
 - ...

Increase beam density during injection: H⁻ charge exchange injection.

H⁻ Charge Exchange Injection Concept

Beam pipe

SNS Foils @ 1.3 MW

Nanocrystalline Diamond ~400 ug/cm² (1 µm thick)

US Department of Energy Office of Basic Energy Sciences Review of Neutron Sciences

Courtesy C. Luck

Limitation: Injection Foil Heating (SNS)

Foil heating simulations for SNS, 1.4 MW, 60 Hz

Sublimation is a limitation on achievable beam power density

⁵ US Department of Energy O⁵ Review of Neutron Sciences

Limitation: Foil-Induced Radiation

Typical injection losses 1 order of magnitude higher than rest of ring:

- SNS: 800 mrem/hr @ injection
- PSR: 1000 mrem/hr @ injection

Dual plane injection painting utilized to minimize these losses.

US Department of Energy Office of Basic Energy Sciences
Review of Neutron Sciences

Simulating "Foil-free" Injection

What if the foil didn't exist? Let's do the experiment.

Parameters:

- 940 MeV
- 1 Hz (Nominal is 60 Hz)
- 1.3 x 10¹⁴ ppp (1.3 MW equivalent @ 60 Hz)
- 1 ms accumulation (1000 turns)

Quick, non-comprehensive scan through different accumulation configurations.

Measured RMS Emittances

Measured RMS Emittances

Implications of Foil Free Higher Beam Density ("In Principle")

Scenario: Factor 2 smaller emittance beam, no foil.

Simply scaling implies (SNS example)....

Parameter	Currently	Fictitious No Foil Case
Injection Radiation	1 rem/hr	< 5 mrem/hr
Machine aperture	100 cm	70 cm
Injection Painting	Optimized to reduce foil passages	Optimized for space charge, distribution

US Department of Energy Office of Basic Energy SciencesReview of Neutron Sciences

Implications of High Power Density ("In Reality")

Implications of Higher Density Beam (Reality)

Parameter	Currently		Highest Density Case
Injection Radiation	1 rem/hr (@) 30cm)	> 10 rem/hr (@ 30cm)
SNS Foil Max Temp	1550 K	$\left(P \propto \sigma T^4\right)$	> 2500K

Laser Stripping Concept

US Department of Energy Office of Basic Energy SciencesReview of Neutron Sciences

The Laser Stripping Project

- Required 10 MW, diverging laser to accommodate excitation frequency spread
- Straightforward scaling to 1 ms requires ~600 kW avg UV laser power (too much!)

SNS Laser Stripping Project:

- Demonstrate laser stripping for longer pulse lengths:
 - 10 us (2016)
 - 1 ms (2019?)
- Technology aimed at HEP applications.
- Funded by DOE HEP grant (DE-FG0213ER41967) UT, ORNL, Fermilab

Reducing Peak Laser Power Requirement

Eliminate transition frequency spread fundamentally:

1. Dispersion Tailoring (Danilov et al)

2. Minimize transverse angular spread, Twiss α =0

Maximize laser-ion beam interaction with vertical squeeze:

1. Transverse (vertical) squeeze: σ_v < 0.2 mm

Required peak UV laser power: 10 MW - 1 MW

US Department of Energy Office of Basic Energy SciencesReview of Neutron Sciences

Reducing Average Laser Power Requirement

Temporal matching

Bunch squeeze to maximize interaction

Configure last ~10 SCL cavities to provide long focusing at interaction point.

US Department of Energy Office of Basic Energy Sciences Review of Neutron Sciences

Reducing Average Laser Power Requirement

Temporal matching

Bunch squeeze to maximize interaction

Experimental Configuration

Interaction point in the HEBT, laser in the Ring Service Building.

Laser transport introduces complications (power loss, pointing stability)

Experimental Station Final Design

Installed Experimental Station

Laser-Ion Beam Temporal Matching

UV peak power achieved: 1.3 - 3.0 MW

Structure	Time	Frequency
Micropulse	30 – 55 ps	402.5 MHz
Macropulse	5 – 10 us	10 Hz

Master oscillator power amplification (MOPA) system

²¹ Review of Neutron Sciences

Y. Liu, A. Rakhman

Laser Transport Mock-Ups

- Piezoelectric tuner will stabilize laser against > 1 Hz drift. Higher frequency not expected.
- Mirror losses independently measured to be $\leq 1\%$.
- Expect ~ 1/3 power loss (Fresnel diffraction, higher order mode loss).

Laser Stripping Efficiency Calculation

- All ion and laser beam parameters achieved.
- Measured parameters used to calculate laser stripping efficiency (pyORBIT model)

The Next Step: 1 ms

Add the recycling cavity to achieve 1 ms laser pulses

- Power recycling cavity relies on CW laser for stable lock.
- Amplification of burst mode laser.
- 50 times power enhancement demonstrated.

US Department of Energy Office of Basic Energy Sciences
Review of Neutron Sciences

Generator

Oscillato

Other Observations of Note

1. Advantages and disadvantages of Laser Stripping:

Some of the disadvantages are problems that will resolve with time, experience

- 2. Laser stripping is more advantageous at high beam energies:
 - Lower frequency laser required: Harmonic generation requires less peak power.
 - Laser power density transformation scales as energy squared: $Q \propto \frac{Q_0}{v^2}$ ullet

Summary

- 1. Material free charge-exchange injection has major advantages over foil-based systems:
 - Virtually no injection beam loss
 - Allows direct accumulation of higher density beams
- 2. Laser stripping injection under development at SNS (UT-ORNL-Fermilab):
 - Demonstrate 10 us stripping, > 90% efficiency (2016)
 - Demonstrate 1 ms stripping, > 90% efficiency (~2019)

