Current Status of Electron-RI Collision Project at RIKEN

M. Wakasugi

COOL15 Workshop, JLab, USA, Sep. 28, 2015

SCRIT Collaboration

RIKEN Nishina Center for Accelerator-Based Science

T. Ohnishi, M. Watanabe, S. Ichikawa, M. Hara, T. Hori

Department of Physics, Rikkyo University

M. Togasaki, K. Yamada, T. Hujita, K. Adachi, M.Hori, A. Enokizono, K. Kurita

Research Center for Electron Photon Science, Tohoku University K. Tsukada, T. Tamae, T. Suda

Current Status of Electron-RI Collision Project at RIKEN

Charge density distribution from elastic scattering

Current Status of Electron-RI Collision Project at RIKEN

Brief history of the project

* In 1995, the project was proposed.

Design study of e-RI collider ring was started.

- * In 2002, experimental scheme was changed to the SCRIT method.
- * In 2007, feasibility study of the SCRIT method was succeeded.
- * In 2009, the SCRIT facility construction was started.
- * In this year, the construction has been almost completed.
- * The facility is now under comprehensive test.

SCRIT (Self-Confining RI Ion Target)

SCRIT is internal-target-forming technique in an electron storage ring.

Target ions are confined in the beam orbit by periodic focusing force.

Location of the SCRIT Facility in RIKEN RI Beam Factory

The SCRIT Electron Scattering Facility

The SCRIT Electron Scattering Facility

SCRIT and its Performances

Simple Estimation of Achievable Luminosity

SCRIT Devise Installed in SR2

Performance of Ion trapping in the SCRIT

Trapping lifetime > 1s

At 250mA:

Trapping efficiency ~90 %

Collision luminosity ~10²⁷/cm²/s (with 3x10⁷ ions)

RI Production and Buncher for Ion Injection to SCRIT

ERIS (Electron-beam-driven RI separator for SCRIT)

RI Beam Production at ERIS

Cooler Buncher Device for Ion Injection to SCRIT

Cooler Buncher converts DC beam to 500µs pulsed beam

Based on RFQ linear trap Einzel lens Extraction electrode Length 950 mm 16 mmø Bore Freq. 0.3~3 MHz < 500 V V_{RF} **RFQ** electrodes Barrier electrodes Injection electrode Einzel lens

Buffer-Gas Free Cooler Buncher for Low-Energy Ion Beam

DC beam is stacked in RFQ by flinging RF field effect at the entrance

Buffer-Gas Free Cooler Buncher for Low-Energy Ion Beam

Luminosity Monitors and Scattered Electron Detectors

On-line Luminosity Monitor

Bremsstrahlung gamma ray created by target ions :

Absolute value of luminosity is obtained from the counting rate.

It is ensured by measuring the energy spectrum and the spatial distributions.

On-line Luminosity Monitor

Counting rate is 40kHz at L= 10^{27} /(cm²s) and 150MeV Accuracy is a few %

Absolute value of luminosity Spatial distribution of Bremsstrahlung gamma ray Ν from ¹³²Xe target at E_e =150MeV $t_{\text{meas.}} \sigma_{\text{brems.}} \varepsilon_{\text{det.}}$ 50 105 Bremsstrahlung γ -ray Vertical position (mm) 00 00 00 00 from trapped ¹³²Xe ions 104 at E_e=150MeV St 103 10² 10 0 50 100 150 200 0 0 20 30 40 50 10 Energy (MeV) Horizontal position (mm)

Window-frame type SCRIT Electron Spectrometer (WiSES)

in combination with drift chambers and trigger scintillators

Momentum resolution 0.1 % (300keV/c at 300MeV)

Performance of WiSES

Measurement of elastic scattering from W wire target with **luminosity ~10²⁸ /(cm²s)**

Performance of WiSES

Elastic scattering from trapped ¹³²Xe ion with the luminosity 2.5x10²⁶ /(cm²s)

Summary

- * SCRIT facility construction has been almost completed.
- * The facility is now under comprehensive test.
- * Works in progress are :
 - bug hunting in all system
 - improvement of RI beam extraction efficiency at ERIS
 - improvement of CD-Pulse conversion efficiency at buncher
 - RTM beam power upgrade
 - study of detector characteristics of WiSES
- * In this fiscal year :
 - elastic scattering cross section measurement for Xe isotopes
 - experiments for RI will be started.

Thank you for your attention