Workshop on Beam Cooling and Related Topics

Sept. 28 - Oct. 2, 2015

Jefferson Lab

Muon Accelerators: R&D Towards Future Neutrino Factory and Lepton Collider Capabilities

Mark Palmer Director, US Muon Accelerator Program September 27, 2015

with acknowledgments to the MAP, MICE and IDS-NF Collaborations

Why Muons?

Outline

Accelerator

- The Muon Accelerator Program
- MAP Neutrino Factory Thrusts
 - Short baseline ⇒ vSTORM
- Beyond Neutrino Factories

 Possibilities for a future Muon Collider Capabilities
 Higgs Factory to >5 TeV
- Key Accomplishments of the MAP R&D Effort
- Conclusion

MAP Feasibility Assessment: 2012-2015

- Scope A focused effort to demonstrate feasibility
 - Provide:
 - Baseline design concepts for each accelerator system (cf. block diagram on slide 3)
 Specifications for all required technologies to guide the R&D effort
 - vopcomodiono for an required teorniologico to gui
 - For novel technologies:
 - Carry out the necessary design effort and technology R&D to assess feasibility
 - Note: a program of advanced systems R&D required after completion of the feasibility assessment
 - Technology R&D and feasibility demonstrations have included:
 - MERIT@CERN (pre-MAP): Demonstration of high power liquid metal jet target concepts
 - MuCool Test Area (MTA) research program (FNAL): RF in high magnetic fields
 - Muon Ionization Cooling Experiment (MICE@RAL):
 - Demonstration of transverse cooling
 - Validation of cooling channel codes and parameters
 - Advanced magnet R&D
 - Very high field magnets (cooling channel and storage rings)
 - Rapid cycling magnets for acceleration of short-lived beams

MAP NEUTRINO FACTORY THRUSTS

6 COOL`15 - Jefferson Laboratory, Newport News, Va, USA

The Critical Issues

What must we understand in the neutrino sector?

- $-\delta_{CP}$: Can this be done with the same precision as the quark sector???
- The mass hierarchy
- The value of θ_{23} - $\pi/4$: +, or zero?
- Resolve the LSND and other short baseline experimental anomalies
- <u>And enable the search for new</u> <u>physics</u>

Impact of precision shortbaseline NF capabilities

Impact of precision longbaseline NF capabilities

GLoBES Comparison of Potential Performance of the Various Advanced Concepts *(courtesy P. Huber)*

Microscopes for the v Sector

September 28, 2015 Fermilab

- Superbeam technology will continue to drive observations in the coming years
- However, anomalies and new discoveries will drive our need for precision studies to develop a complete physical understanding
- Neutrino Factory capabilities (both long- and shortbaseline) offer the route to controlled systematics and precision measurements, which are required to fully elucidate the relevant physics processes

⇒ Precision Microscopes for the v sector

v Beams at nuSTORM

 v beams from π decay at nuSTORM: High flavor purity with flux known to <1%

> Now providing new concepts for higher purity beamlines for superbeam sources ⇔ NuPIL, enhanced MOMENT

 v beams from μ decay at nuSTORM: Absolute flavor purity with flux known to <1%

vStorm as an R&D platform

- A high-intensity pulsed muon source for accelerator R&D
 - $-100 < p_{\mu} < 300$ MeV/c muons
 - Using extracted beam from ring
 - 10¹⁰ muons per 1 μsec pulse
 - Beam available simultaneously with physics operation
- A platform to test instrumentation for characterizing high intensity muon beams

September 28, 2015 **Fermilab**

DECAY RING - PLAN

The Long Baseline Neutrino Factory

Accelerate Arogram

- IDS-NF: an idealized NF
- Muon Accelerator Staging Study:

An incremental approach -NuMAX@5 GeV⇔SURF

	Value
Accelerator facility	
Muon total energy	10 GeV
Production straight muon decays in 10^7 s	10^{21}
Maximum RMS angular divergence of muons in production straight	$0.1/\gamma$
Distance to long-baseline neutrino detector	1 500–2 500 km

Magnetized Iron Neutrino Detector (MIND):

- IDS-NF baseline:
 - Intermediate baseline detector:
 100 kton at 2500-5000 km
 - Magic baseline detector:
 50 kton at 7000-8000 km
 - Appearance of "wrong-sign" muons
 - Appearance of wrong-sign inc
 Toroidal magnetic field > 1 T
 - Foroidal magnetic field > 1 T
 Excited with "superconducting transmission line"

- Segmentation: 3 cm Fe + 2 cm scintillator
- 50-100 m long
- Octagonal shape
- Welded double-sheet
 Width 2m; 3mm slots between plates

Bross, Soler

13 COOL`15 - Jefferson Laboratory, Newport News, Va, USA

The MAP Muon Accelerator Staging Study ⇒ NuMAX

COOL`15 - Jefferson Laboratory, Newport News, Va, USA 14

September 28, 2015 **Fermilab**

roaran

MASS NF Parameters

Program

Summary of Neutrino Factory Thrusts

- Short Baseline NF
 - nuSTORM
 - Definitive measurement of sterile neutrinos
 - Precision ν_{e} cross-section measurements (systematics issue for long baseline SuperBeam experiments)
 - Beam line concept ⇒ higher purity beams for current experimental program
 - HEP muon accelerator proving ground...
- Long Baseline NF with a Magnetized Detector
 - IDS-NF (International Design Study for a Neutrino Factory)
 - 10 GeV muon storage ring optimized for 1500-2500 km baselines
 - "Generic" design (ie, not site-specific)
 - NuMAX (Neutrinos from a Muon Accelerator CompleX)
 - Site-specific: FNAL ⇒ SURF (1300 km baseline)
 - 4-6 GeV beam energy optimized for CP studies
 - Flexibility to allow for other operating energies
 - Can provide an ongoing, high statistics, short baseline measurement option
 - Magnetized Detector
 - LAr is the goal but magnetized Fe provides equivalent CP sensitivity with ~3x the mass

GOING BEYOND NEUTRINO FACTORY CAPABILITIES

18 COOL`15 - Jefferson Laboratory, Newport News, Va, USA

Muon Colliders – Efficiency at the multi-TeV scale

COOL`15 - Jefferson Laboratory, Newport News, Va, USA 20

Muon Collider Parameters

↑ North

21

1	//ogram						
Muon Collider Parameters							
Acceleration Acceleration Compression H- thing and the second sec		<u>Higgs</u>	<u>Multi</u>			<u>TeV</u>	
Fermilab Site							Accounts for
			Production				Site Radiation
Parameter		Units	Operation				Mitigation
CoM En	ergy	TeV	0.126		1.5	3.0	6.0
Avg. Luminosity		10 ³⁴ cm ⁻² s ⁻¹	0.008	1.25		4.4	12
Beam Energ	y Spread	%	0.004		0.1	0.1	0.1
Higgs Producti	ion/10 ⁷ sec		13,500	37	7,500	200,000	820,000
Circumfe	rence	km	0.3		2.5	4.5	6
No. of	IPs		1		2	2	2
Repetition	n Rate	Hz	15		15	12	6
β*		cm	1.7	1 (0.	5-2)	0.5 (0.3-3)	0.25
No. muons	s/bunch	10 ¹²	4		2	2	2
Norm. Trans. Er	mittance, ε_{TN}	π mm-rad	0.2	(0.025	0.025	0.025
Norm. Long. En	nittance, ε_{LN}	π mm-rad	1.5		70	70	70
Bunch Len	gth, σ_{s}	cm	6.3		1	0.5	0.2
Proton Drive	er Power	MW	4		4	4	1.6
Wall Plug	Power	MW	200		216	230	270
Exquisite Energy Resolution		Success	of ad	lvance	d cooling		
Allows Direct Measuremen			concepts ⇒ several × 10 ³²				
COOL`15 - Jefferson	USA	Septe	ember	28, 2015	Fermila		

MUON ACCELERATOR R&D Key Accomplishments

22 COOL`15 - Jefferson Laboratory, Newport News, Va, USA

Critical Feasibility Issues High Power Target Station • Proton Driver Energy Deposition Front End **RF** in Magnetic Fields Cooling Magnet Requirements (Nb₃Sn vs HTS) Acceleration >400 Hz AC Magnets Collider Ring **IR Magnet Strengths/Apertures** • MDI SC Magnet Heat Loads (µ decay) Backgrounds (µ decay) Detector

Muon Ionization Cooling (Design) ptot [MeV/c coils: Rin=42cm, Raut=60cm, L=30cm; RF: f=325MHz, L=2×25cm; LiH wedges Mod (t, T_{RF}) [ns Initial 6D Cooling: ε_{6D} $60 \text{ cm}^3 \Rightarrow \sim 50 \text{ mm}^3$; Trans = 67%coil 10 cavities absorber TOP VIEW ε_τ (mm) (mm) Emittance, s (mm) Theor SIDE VIEW 100 200 300 400 500 Distance, z (m) 6D Rectilinear Vacuum Cooling Channel (replaces Guggenheim concept): $\epsilon_T = 0.28$ mm, $\epsilon_L = 1.57$ mm @488m Transmission = 55%(40%) without(with) bunch recombination September 28, 2015 **Fermilab** COOL`15 - Jefferson Laboratory, Newport News, Va, USA 28

• Final Cooling with 25-30T solenoids (emittance exchange): $\epsilon_T = 55 \mu m$, $\epsilon_L = 75 mm$

29 COOL`15 - Jefferson Laboratory, Newport News, Va, USA

Muon Ionization Cooling Experiment

HOLE 1-1/4-1 REN ASSY 0043010300 REN Cooling Channel Commissioning Underway for MICE Step IV

Ionization Cooling Summary

✓ 6D Ionization Cooling Designs

- Designs in hand that meet performance targets in simulations with stochastic effects
- Ready to move to engineering design and prototyping
- Able to reach target performance with Nb₃Sn conductors (NO HTS)
- ✓ RF operation in magnetic field (MTA program)
 - Gas-filled cavity solution successful and performance extrapolates to the requirements of the NF and MC
 - Vacuum cavity performance now consistent with models
 - MICE Test Cavity significantly exceeds specified operating requirements in magnetic field

✓ MICE Experiment now in commissioning phase

- ~ Final Cooling Designs
 - Baseline design meets Higgs Factory specification and performs within factor of 2.2× of required transverse emittance for high energy MC (while keeping magnets within parameters to be demonstrated within the next year at NHMFL).
 - Alternative options under study

Acceleration

Collider Rings

 Detailed optics studies for Higgs, 1.5 TeV, 3 TeV and now 6 TeV CoM

 With supporting magnet designs and background studies

Higgs, 1.5 TeV CoM and3 TeV CoM Designs

- With magnet concepts
- Achieve target
 parameters
- Preliminary 6 TeV CoM design
 - Key issue is IR design and impact on luminosity
 - Utilizes lower power on target

36 COOL`15 - Jefferson Laboratory, Newport News, Va, USA

Machine Detector Interface

- Backgrounds appear manageable with suitable detector pixelation and timing rejection
- Recent study of hit rates comparing MARS, EGS and FLUKA appear consistent to within factors of <2
 - Significant improvement in our confidence of detector performance

150 -25 m) 0-100 m) 25 -25 0 0 25 100

Va, USA September 28, 2015 **FERMILAD**

Detector Backgrounds & Mitigation

Iram Trackers: Employ double-layer **Dual Readout Projective Calorimeter** structure with 1mm separation for Lead glass + scintillating fibers Dual Readout **ILCroot** Simulation neutral background suppression ~1.4° tower aperture angle Calorimeter Split into two separate sections Front section 20 cm depth 10° Nozzle Rear section 160 cm depth 100 ~ 7.5 λ_{int} depth % 95 efficiency, >100 X depth 90 Fully projective geometry Azimuth coverage 85 down to ~8.4° (Nozzle) hit clusters Barrel: 16384 towers 80 Endcaps: 7222 towers 75 After timing cut muon 70 All simulation parameters corresponds to After timing, edep cuts ADRIANO prototype #9 tested by WLS 65 After timing, edep, double layer cuts Fermilab T1015 Collaboration in Aug 2012 ≞ @ FTBF (see also T1015 Gatto's talk at 60 Calor2012) d = 1mm, B = 3.5T Several more prototypes tested @ FTBF. 55 Tracker New test beam ongoing now @ Fermilab. 50 9 10 2 з 5 8 - Fermilab 7 Laver Time gate & Rol ON – BG ON Single layer bkgd occupancy background pixel occupancy, % Calorimeter: 90% eff | TimeGate: ON | BG: ON 95% eff | TimeGate: ON | Rol: ON | BG: ON Tracker: 120 Preliminary detector γ^2/ndf 51.09 / 40 Const 98.07 ± 13.15 MassHOAD 1512 ± 10.0 study promising 100 92.91 ± 7.74 Const 35.68 ± 8.30 Real progress 1340 ± 47.5 Mean 80 146.1 ± 29.0 σ 10 1st pass setup: pol0 -17.67 ± 44.69 requires dedicated pol1 0.03573 ± 0.07694 60 pol2 -1.474e-05 ± 2.888e-05 Further effort, which MAP NARS b 40 Before cuts was not allowed to =6.1% improvements After all cuts M 20 fund anticipated 10 200 400 600 800 1000 1200 2 5 6 10 0 00 1400 1600 1800 2000 dijets mass distribution [GeV/c²] September 28, 2015 Fermilab MARS Bkgds ⇒ ILCRoot Det Model News, Va, USA

Conclusion

- Neutrino Factory capabilities offer a precision microscope that will likely be needed to fully probe the physics of the neutrino sector
- A multi-TeV muon collider may be the only cost-effective route to lepton collider capabilities at energies > 5 TeV
- For the last 4 years US Muon Accelerator Program has pursued options to deploy muon accelerator capabilities
 - Near-term (vSTORM)
 - Mid-term (NuMAX)
 - Long-term: a muon collider capability that would build on the NF complex

• Key technical hurdles have been/are being addressed

- Realizable cooling channel designs with acceptable performance
- Breakthroughs in cooling channel technology
- MICE commissioning is now underway

Muon accelerator capabilities offer unique potential for the future of high energy physics research

39 COOL`15 - Jefferson Laboratory, Newport News, Va, USA

Since COOL`13, we have lost three key contributors to Muon Accelerator R&D

David Cline, UCLA June 27, 2015 Andy Sessler, LBNL April 27, 2014

They will be sorely missed

40 COOL`15 - Jefferson Laboratory, Newport News, Va, USA

Mike Zisman, LBNL August 30, 2015 September 28, 2015