

Performance of the 2 MeV Electron Cooler at COSY

Sept. 28, 2015 | COOL'15 | Vsevolod Kamerdzhiev for COSY and BINP teams

The 2 MeV electron cooler at COSY

Mitglied der Helmholtz-Gemeinschaft

Integration into COSY

Installation into the COSY ring

Sept. 28, 2015

COOL15

V.Kamerdzhiev

Installation into the COSY ring

Sept. 28, 2015

2 MeV e-cooler for COSY, project milestones

- 2003 first ideas and discussions
- 2004 development of prototype components started at BINP
- 2005 feasibility study
- 2005 dedicated working group on COSY 2 MeV cooler at COOL05 in Galena
- 2005-2006 applications for funding
- 2006-2008 further reports completed (prototype of HV sections)
- 03.2009 allocation of funding
- 07. 2009 signing the contract with BINP for the development and manufacturing of the 2 MeV cooler
- 12. 2009 CDR finished
- 2010-2012 Manufacturing at BINP
- 2012 initial commissioning with e-beam at BINP
- 12.2012 delivery to Jülich
- 04.2013 installation in COSY
- 10.2013 first beam cooling

Design parameters of the 2 MeV e-cooler

Energy range:	0.025 - 2 MeV
High voltage stability	< 10 ⁻⁴
Electron current	up to 3 A
Electron beam diameter	10 - 30 mm
Cooling section length	2.7 m
Toroid radius	1 m
Magnetic field	
(cooling section solenoid)	0.5 - 2 kG
Vacuum at cooler	10 ⁻⁹ - 10 ⁻¹⁰ mbar

Designed and built at BINP, Novosibirsk

Sept. 28, 2015

Current status

Electron cooling of proton beam

Proton energy, MeV	Electron energy, MeV	Max. electron current, A	
200	0.109	0.5	
353	0.192	0.5	
580	0.316	0.3	Icoll(mA
1670	0.908	0.9	1 936.0
			2 901.510

Electron current and energy demonstrated so far

	Electron energy, MeV	Electron current, A
	0.024	1
ctron Energy,kV	1.25	0.2
517.000 Apply Voltage of ACC	1.5	0.09
1516.984		

Vacuum in the cooler 3-5.10⁻¹⁰ mbar

Ele

Electron cooling of a dc proton beam

final $\Delta p/p = 5 \cdot 10^{-5}$

Time span of the color spectrogram 550 s

Vertical pickup of the SC system was used to measure the spectra

5-10⁸ protons, 1.66 GeV, electron current 0.8 A, 1.3 kG 8, 2015 V.Kamerdzhiev

Mitglied der Helmholtz-Gemeinschaft

E-cooling of a dc p beam, turning off EC

Longitudinal electron cooling process. e-beam turned off leading to fast $\Delta p/p$ growth. 5.10⁸ protons, 1.66 GeV, electron current 0.8 A

RF & e-cooling

final $\Delta p/p = 10^{-4}$

Sept. 28, 2015

COOL15

V.Kamerdzhiev

RF & e-cooling

Sept. 28, 2015

Barrier Bucket & e-cooling

Barrier bucket on (~200 V), e-cooling with 550 mA

V.Kamerdzhiev

COOL15

Sept. 28, 2015

13

Transverse e-cooling

3.6-10⁸ protons 1.66 GeV $I_e = 0.8 A$ 1.3 kG 1. Noise + EC 2. Noise only 3. Reference 4. EC

$$\begin{split} \epsilon_{x} &= 1.1 \rightarrow 0.1 \\ \epsilon_{v} := 1.3 \rightarrow 0.2 \\ & \text{mm·mrad, normalized} \\ & \text{beam core} \\ & \text{within 200s} \end{split}$$

IPM screenshot

Electron and stochastic cooling

initial noise + e-cooling at 400 mA + stochastic cooling. Time span 220 s.

e+st. cooling. SC off, e-beam energy changed by +30 V (909.03 kV)

BB, e + st. cooling and pellet target

Barrier bucket + e & st. cooling + target (after cooling finished)

e-cooled beam + BB on + target, then EC off.

BB, e + st. cooling and pellet target

e-current 0.8 A, barrier bucket.

Need higher BB voltage?

Summary of the March 2015 beam time

- Due to hardware issues (EC & COSY) there was not enough time to go for higher energy and different magnetic field
- Better e-beam diagnostics and correction schemes allowed for faster cooling
 - $\Delta p/p = 5e-5$ in less than 100 s
 - $\varepsilon_x = 1.1 \rightarrow 0.1$, $\varepsilon_y := 1.3 \rightarrow 0.2$ mm·mrad, within 200s (beam core)
- EC works well together with stochastic cooling, RF, BB
- Application of simultaneous stochastic and EC aided by the barrier bucket system to suppress ∆p/p and emittance growth due to a pellet target operation
 - Longitudinal losses observed, $\Delta p/p = const.$
 - Transverse: the cooling at current settings was not powerful enough to prevent emittance growth
- Successful compensation of emittance growth due to "virtual target" (noise excitation) using EC

Lessons learned

- Parameter space is too large to tune manually, need model-based setup
 - Change of energy, magnetic field, e-orbit, e-current results in significant retuning
- A detailed 3D model of the magnetic system (as is) is a must
 - Systematic studies of cooling time vs energy and magnetic field
- E-beam instrumentation is crucial for understanding e-beam quality and thus cooling process
 - BPMs
 - Sector e-gun
 - Adjustable e-beam profile
- Automated measurement and correction of the e-beam Larmor oscillations significantly shortened setup time and improved cooling performance

Mitglied der Helmholtz-Gemeinschaft

Model development

Sept. 28, 2015

EDIP

Model of the e-cooler

Sept. 28, 2015

COOL15

V.Kamerdzhiev

Model of the e-cooler

Summary

- The 2 MeV electron cooler at COSY is a unique device as it combines high energy and high magnetic field
- Low intensity 1.6 GeV proton beam was cooled within:
 - 100 s longitudinally
 - 200 s transverse
- Need to establish model-based automated e-beam setup procedures (work in progress) to carry out systematic studies on cooling time vs energy and vs B under reproducible conditions

even shorter cooling time?

Thank you

Sept. 28, 2015

COOL15

V.Kamerdzhiev

24

Backup slides

Plans / work in progress

Proton + electron beams are required:

- Acquire experimental data on how the cooling rate scales with energy and compare with simulation results
- Investigate cooling performance in presence of internal cluster target
- Study/optimize interaction of the accelerator and the cooler
- Study intensity/impedance effects
- Explore simultaneous electron and 3D stochastic cooling in more detail
- Incorporate the cooler into the COSY model and perform beam tests

Electron beam only is required:

- Implement model-based techniques for setting up the cooler
- Commission "virtual operator" software
- Continue HV conditioning
- Further improve straightness of the magnetic field in the cooling section

Simulations

Initial distribution of electrons Vertical Coordinate [mm] 6 -6 -4 Horizontal Coordinate²[mm] 4

Magnetic fields used in the simulation shown on slide 20IST_COOL,SETTING: 53.04 AIST_TOROID,SETTING: 146.88 AIST_LONGITUDINAL,SETTING: 56.01 AIST_STRAIGHT,SETTING: 56.01 AIST_BENDING,SETTING: 21.33 A

EDIP 5.5 A and 6.0 A

Matching coils for the simulation shown on slide 21 5.11, 1.91, 4.05, 1.67, 5.27, 2.19, 6.00 Arbitrary numbers for demonstration purposes

Model and simulations by Arthur Halama

Beam instrumentation

As electron cooling is inherently a 3D process, longitudinal and transverse proton beam diagnostics is essential for understanding the cooling dynamics

At COSY non-destructive beam instrumentation is readily available

- Stochastic cooling pickups (medium and high energy)
- Standard BPM pickups (any energy)
- Bunch length / phase monitor
- Ionization beam profile monitor (H+V)
- H⁰ diagnostics (count rate)

The e-cooler is equipped

- 12 BPMs
- Sector e-gun, helps making galloping effects visible
- Option to vary e-beam profiles

Broken power amplifier exciting the beam

Sept. 28, 2015

Experimental results, dc beam & e-cooling

initial noise + electron cooling at 400 mA @ 909.03 kV

Sept. 28, 2015

32

no cooling, BB on, target on, particles escaping from the BB are clearly seen

Sept. 28, 2015

e+st cooling on, then pellet target (WASA) on, later target off, the beam is cooled again by st. cooling

Sept. 28, 2015

IÜLICH

FORSCHUNGSZENTRUM