Higher Energies E-cooling – current prospects V.Parkbomchuk, V.Reva, <u>A.Skrinsky</u> Jlab, 28:09:2015

Budker Istitute of Nuclear Physics

For fast cooling:

- electron energy up to 2-4 MeV electrostatic acceleration;
- higher energies RF accelerator-recuperator.

- 1-HV vessel
- 2 line element of the transport channel
- 3 bend element
- 4 cooling section
- 5 toroid section

COSY cooling system (general view)

2 MeV cooler arriving at COSY (2012)

(BINP: design, construction, start of operation)

Main parameters of COSY cooling system.

Energy range	0.025 ÷ 2 MeV
Maximal electron current	1-3 A
Cathode diameter	30 mm
Cooling section	<u>2.69 m</u>
Bending radii	1.00 m
Magnetic field in cooling section	0.5 ÷ 2 kG
Vacuum in cooling section	10 ⁻⁹ mbar
Full length of electron beam (cathode-collector)	27 m

Long-to-short proton bunches using electron cooling @ COSY.

Higher energies could be useful to enhance luminosity of Ion-ion end electron-ion colliders at ion energies 10–100 GeV per nucleon. The Novosibirsk FEL as prototyping electron beams for higher energies electron cooling.

Novosibirsk Free Electron Lasers – based on multi-turn accelerator-recuperator

Electron beam and radiation parameters

	1 st	2 nd	3 d	
Energy, MeV	12	22	42	46
Current, mA	30	10	3	50
Wavelength, Mm	90-240	37-80	9	5-20
Radiation power, kW	0.5	0.5	0.1	5
Electron efficiency, %	0.6	0.3	0.2	0.5

Parameters of Novosibirsk FEL – important for cooling:

Injection energy, MeV	2
Main linac energy gain, MeV	10
Charge per bunch, nC	1.5
Normalized emittance, mm·mrad	20
RF frequency, MHz	180.4
Maximum repetition rate, MHz	90.2
Pulsed current, A	15
Mean current, mA	150
Maximal energy, MeV	42
	(50)

Electron beam from the gun passes through the bunching RF cavity, drift section, two accelerating cavities, the main accelerating structure and the undulator, where a fraction of its energy is converted to radiation.

After that, the beam returns to the main accelerating structure in a decelerating RF phase, decreases its energy to its injection value (2 MeV) and is absorbed in the beam dump.

THz FEL (old)

Main improvement needed.

To reach fast and deep enough cooling we need: electron beam immersed in "perfect" longitudinal magnetic field from emitter (gun) to collector!

Plus, If necessary, – stochastic precooling!

- 1 accelerator column (2 MeV)
- 2 RF structure (50 MeV)
- 3 toroid section
- 4 bend element
- 5 beam transformer element

- 6 cooling section
- 7 beam transformer element
- 8 bend element
- 9 decelerator column

E-Beam

Transfer section: low longitudinal field, wider E-beam → to higher field compressed E-beam

Such e-beam compression makes transvers electron velocities higher – hence, suppresses electron-ion radiative recombination and ion beam life-time longer almost without harm for cooling rate. The presented option is just preliminary sketch. The other roads to higher energies e-Cooling are proposed and under development by Ya.Derbenev & V.Litvinenko ("coherent electron cooling") and Ya.Derbenev (transformations of round to flat beams).

In any case, it is lot of work to design high luminosity Ion-ion and electron-ion beams colliders In 10-100 GeV ion energy range.