



Yoshitaka Yamaguchi on behalf of rare-RI ring collaboration

COOL'15 workshop : October 2, 2015





A storage ring dedicated to mass measurements of exotic nuclei based on Isochronous Mass Spectrometry (IMS)

- Measurement time is as short as 1 ms
- Expected mass resolution is in the order of ppm
- Self-trigger mechanism with a fast-kicker system

## Self-trigger mechanism

- Trigger signal to excite the kicker is generated by injecting RI itself at F3.
- Kicker magnetic field needs to be excited before the RI arrives.



### Self-trigger mechanism

- Trigger signal to excite the kicker is generated by injecting RI itself at F3.
- Kicker magnetic field needs to be excited before the RI arrives.







# Simulation for <sup>78</sup>Ni





**ppm order** <  $10^{-6}$  ~  $10^{-6}$   $\beta_1 \sim 10^{-4}$  (k ~  $10^{-2}$ )







# **Construction and Machine study**

<u>2012 - 2013</u>



### <u>2014 - 2015</u>

- Basic performance test of R3 using  $\alpha$ -source.
- Development of fast-kicker system (fast-response, fast-recharging) and beam diagnostic devices. (Resonant Schottky pick-up, C-foil + MCP)
- First commissioning of R3 using <sup>78</sup>Kr beam was conducted on June 2015 and off-line analysis is in progress.









### Fast-kicker system



### **Fast-kicker system**



# **Fast-recharging mechanism**



# Monitor for checking of the injection trajectories

Plastic scintillation counters are installed on movable stage to each straight section

### Monitor for tuning of isochronism

Resonant Schottky pick-up

uners

Ceramic

Pick-up couple

tube

# Monitor for checking of the injection trajectories

Plastic scintillation counters are installed on movable stage to each straight section

Resonance frequency : $173 \text{MHz} (\text{TM}_{010})$ Tuning range : $\pm 1.5 \text{MHz}$ Shunt Impedance  $R_{\text{sh}}$  : $161 \text{k}\Omega$ Quality factor  $Q_0$  :1880Ceramic tube size : $290 \text{mm}\Phi$ , 15mm thickness

### Monitor for tuning of isochronism

Resonant Schottky pick-up

uners

Ceramic

Pick-up couple

tube

# Monitor for checking of the injection trajectories

Plastic scintillation counters are installed on movable stage to each straight section

Resonance frequency : $173 \text{MHz} (\text{TM}_{010})$ Tuning range : $\pm 1.5 \text{MHz}$ Shunt Impedance  $R_{\text{sh}}$  : $161 \text{k}\Omega$ Quality factor  $Q_0$  :1880Ceramic tube size : $290 \text{mm}\Phi$ , 15mm thickness

### Monitor for tuning of isochronism

Resonant Schottky pick-up

uners

Ceramic

Pick-up couple

tube

# Monitor for checking of the injection trajectories

Plastic scintillation counters are installed on movable stage to each straight section

Resonance frequency : $173 \text{MHz} (\text{TM}_{010})$ Tuning range : $\pm 1.5 \text{MHz}$ Shunt Impedance  $R_{\text{sh}}$  : $161 \text{k}\Omega$ Quality factor  $Q_0$  :1880Ceramic tube size : $290 \text{mm}\Phi$ , 15mm thickness

#### Monitor for tuning of isochronism

Resonant Schottky pick-up

uners

Ceramic

Pick-up couple

tube

# Monitor for checking of the injection trajectories

Plastic scintillation counters are installed on movable stage to each straight section

Monitor for circulating particle

C-foil + MCP timing monitor



C-foil ( $60\mu g/cm^2$ ) MCP secondary electron detector Window size :  $100 \times 50 mm^2$ Position sensitivity : less than 10mm Efficiency : ~ 75 % Time resolution :  $\sigma$  ~ 130ps with <sup>84</sup>Kr 200MeV/u

## First commissioning of R3 using <sup>78</sup>Kr beam

### <u>Items</u>

0. Beam transport

- 1. Individual injection using self-trigger mechanism
- 2. Detect the circulating particles using C-foil + MCP
- 3. Extraction the circulating particles
- 4. Isochronous condition with TOF vs. F6x information
- 5. Resonant Schottky pick-up with single <sup>78</sup>Kr ion

### Beam conditions

- Energy :  $345 \text{ MeV/u} \rightarrow 168 \text{ MeV/u} @R3$
- Injection repetition rate : ~90 Hz (@F3 circuit)

### Ring conditions

- Transition  $\gamma_{tr}$ : 1.18
- Betatron tune :  $v_x = 1.18, v_y = 0.93$
- $\beta$  function :  $\beta_x = 8.4 \text{ m}, \beta_y = 11.9 \text{ m}$
- Dispersion : 70 mm/%
- Kick angle : ~11 mrad

### 1. Individual injection Proposed by I. Meshkov NIMA523(2004)262



### 2. Detect the circulating particles







# 2. Detect the circulating particles

3. Extraction



### TOF spectra

for the difference extraction timing









### 5. Resonant Schottky pick-up (in storage mode)

• Succeeded in detecting the single  $^{78}$ Kr<sup>36+</sup> ion  $\rightarrow$  <u>high sensitivity</u>

- Frequency resolution : ~1.3x10<sup>-6</sup> (FWHM)  $\rightarrow$  enough resolution
- Stored in the ring about 4 seconds while changing its frequency due to the poor degree of vacuum in the ring.
- The shape of curve indicates the isochronous condition.



### **Preliminary consideration**



## Summary

• First commissioning using <sup>78</sup>Kr beam was conducted successfully.

• First-order trim field can adjust the isochronism in an order of 10-ppm.

 For adjusting the isochronism in an order of ppm. Resonant Schottky pick-up can be used for checking it.



### Next beam commissioning is scheduled in Dec. 2015.

 Verification of the principle of relative mass measurements Primary beam : <sup>48</sup>Ca 345 MeV/u Secondary particles : <sup>38</sup>K, <sup>40</sup>Ca, <sup>36</sup>Ar, <sup>39</sup>K, <sup>37</sup>Ar, etc...

### We will start mass measurement experiments from 2016.

# Thank you for your attention



### **Prospects**

R3 will be improved as a **<u>ppm-order machine</u>** in a few years.  $\rightarrow$  precision mass measurement even only one event / day

