Challenges of Beam Cooling at Low Energy

Andreas Wolf Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany COOL13, Mürren, 10-14 June 2013

Low energy ion beam projects Parameters of low-energy ion beam storage and cooling Low-energy electron coolers: S-LSR, TSR Low-energy cooling in the cryogenic, electrostatic CSR

Low-energy stored ion beams for atomic, molecular and fundamental particle research

Low-energy antiprotons

LEAR, AAC, ELENA (CERN) down to 5 MeV (and below)

Low-energy stored ion beams for atomic, molecular and fundamental particle research

Low-energy stored ion beams for atomic, molecular and fundamental particle research

- Low-energy *antiprotons*
- **Cooler storage rings**
- LEAR, AAC, ELENA (CERN)
- **CRYRING (Stockholm** \rightarrow FAIR) ~5 MeV/u TSR (Heidelberg→ISOLDE/ **CERN**) S-LSR (ICR Kyoto)
- down to 5 MeV (and below)
- \rightarrow ~100 keV/u $(E_{\rm kin} \sim {\rm few \ MeV})$

Electrostatic storage rings

ELISA (Aarhus) KEK & TMU (Tokyo) **DESIREE** (Stockholm) **CSR** Heidelberg

 $E_{\rm kin} \sim 20-100 \; \rm keV$ (300 keV, CSR)

Low-energy stored ion beams for atomic, molecular and fundamental particle research

AD: CERN p decelerator

Max-Rlance-manysil

für Kornphysik

für Kernphysik

Low energy electron cooler at S-LSR

Proc. EPAC 2006, TUPLS064 H. Fadil et al.

S-LSR Kyoto

Electron Energy:3.8 keVElectron Density:2.2 × 10⁶ /cm³Effective Cooler Length:0.44 mExpansion Factor:3Temperature at
transition to ordered state:2 K long., 11 K transv.

A. Noda et al., COOL '11, MOIO06

Fadil et al., COOL '03, NIM A 532 (2004) 446-450

Photocathode electron target at TSR

TSR electron target setup

TSR electron target setup

Max-Rlanck-Institut für Karnshysik

Photocathode beam formation

- D. A. Orlov et al., J. Appl. Phys. 106, 054907 (2009)
- Beam transport down to < 1 eV with 10 µA current (0.01 T guiding field)

Collab. with Inst. f. Semiconductor Phys., Novosibirsk, A. N. Terekhov

http://www.mpi-hd.mpg.de/ion-storage

D. A. Orlov, C. Krantz, A. Shornikov

Electron beam profile monitoring

225 V, 1 mA electron beam

After 7 hours of running (normal conditions)

Claude Krantz, PhD thesis (2009)

Cathode damage by re-accelerated residual gas ions (after 5 hours)

Cryogenic electrostatic storage ring CSR

Stored ion beams with keV energies of large compounds, clusters (cations, anions),

http://www.mpi-hd.mpg.de/ion-storage

Max-Rianck-Institu für Kermphysik

CSR electron cooler and target

CSR electron cooler and target: setup

CSR electron cooler and target: setup

http://www.mpi-hd.mpg.de/ion-storage

Max-Rlanck-Institu für Kernshysik

Summary

Low-energy ion beam storage: atomic, molecular, particle physics

Parameters of low-energy storage and cooling

 Advantages of electrostatic storage for high masses
Photocathode: advantages in temperature and density at < 100 eV electron energy

Low-energy electron cooling systems S-LSR (~1 keV), TSR (~40 eV)

Ultra-low energy cooler for cryogenic (XHV) ion beam surrounding In construction: CSR electron cooler / target (~1 eV)

Max-Planck-Insitut für Kernphysik, Heidelberg

Division on Stored and Cooled Ions (K. Blaum)

Atomic and molecular guantum dynamics O. Novotný(*), C. Krantz, S. Menk, M. Lange PhD: S. Vogel, A. Becker, P. Herwig, Bian Yang Recently completed post-docs: H. Buhr, A. Petrignani Recently completed PhD: J. Stützel, M. Berg, M. Mendes, D. Bing,

Heidelberg collaborations

Kirchhoff Inst., Univ. Heidelberg

A. Fleischmann

C. Enss

Microcalorimeter ion detector

External collaborations

Weizmann Institute of Science Rehovot. Israel

D. Zajfman, O. Heber, **D.** Schwalm

Univ. Louvain-La-Neuve, Belgium X. Urbain

Univ. of Illinois, Urbana **B. McCall**

W. D. Geppert

M. Grieser, R. von Hahn, R. Repnow *PhD:* F. Fellenberger, F. Berg

F. Laux, A. Shornikov, C. Domesle

ASTROLAB H. Kreckel, F. Grussie

Max-Planck-Institut für Astronomie

Th. Henning D. Semenov

Columbia Univ.. NYC D. Savin, O. Novotný(*)

> Univ. Giessen, Germany S. Schippers, A. Müller

DFG