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• Short bunch of hot secondary beam (pbars/rare isotopes) from production target into the CR 
 

• After bunch rotation & adiabatic debunching, the δp/p of the coasting beam                 
       is low enough for stochastic cooling of all particles 

 
• Fast 3D stochastic cooling necessary for maximum production rate of secondary beams 

 
• The CR provides the HESR (i) with pre-cooled pbars for accumulation as planned in the first FAIR phase  

       and (ii) with (pre-cooled) stable ions/rare isotopes for in-ring experiments 

Antiprotons 

3 GeV,  108 ions 

Rare isotopes/stable heavy ions 

740 MeV/u,  cooling of 108 ions   

(max. 109 ions  in ring) 

δp/p (rms) εh,v (rms)  

[π mm mrad] 

δp/p (rms) εh,v (rms)  

[π mm mrad] 

Before/after cooling 0.35 % / 0.05 % 45 / 1.25 0.2 % / 0.025 % 45 / 0.125 

Phase space reduction 9x103 1x106 

Cooling down/cycle time ≤ 9 s  / 10  s ≤ 1 s  / 1.5 s 

Required performance of the CR stochastic cooling  
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• Pick-up electrodes cooled at 20-30K 
 
• Plungeable pick-up electrodes i.e. moving  
      closer to the beam during cooling 

 
• Notch filter momentum cooling for noise 

suppression around revolution harmonics  

Main issue for antiprotons: increase ratio 

noise thermal

)Q ( signalSchottky 2
Main issue for rare isostopes: 
undesired mixing (from PU to K)  

    Challenges and design criteria 

• Pre-cooling (1st stage) 
with Palmer method 

 
•  Cooling (2nd stage) 

with the notch filter 

C. Dimopoulou, TUAM1HA01, COOL13 



Electrode  
double-module 

cryoshield at 80 K 

flexible BeCu  
sheet at 30 K 

technical challenge cryoshield: 
made of oxygen-free copper,  
gilded galvanically 
to reach very low thermal emissivity  
(expected < 2% from measurements  
performed on speciments in our lab) Motor  

drive  
unit 

Prototype PU tank at GSI 

4 half-shells, each 1 m long 

May 2013 

Preparation of mounting pieces 
and test-assembly of the Cu-cryoshield 
in the prototype pick-up tank 
July 2013: gilding of the cryoshield by contractor  
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3D stochastic cooling of coasting secondary beams  
(antiprotons @ v = 0.97c , rare isotopes @ v = 0.83c ) 
Beam revolution frequency (period)~ 1 MHz (1μs) 

3D cooling branches and their purpose 

 
Pick-ups HL, VL→ Kickers HL, VL 
notch filter longitudinal cooling method 
• antiproton cooling;  
• rare isotopes final-stage cooling; 
• stable ions cooling. 

 
Palmer pick-up → Kickers KHL, KVL 
Palmer 3D cooling method 
rare isotopes 1st-stage cooling (pre-cooling) 

System bandwidth = 1-2 GHz 

upgrade beyond MSV0-3: 
pbar momentum cooling  
in band 2 – 4 GHz 

CR Stochastic Cooling System 1-2 GHz 
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Slotline electrodes for PUs (HL/VL) 

Beam 

• UHV-compatible  
• broadband within 1-2 GHz 
• high coupling impedance to the beam 
• mechanically robust for plunging 

milled module body  
with combiner boards 

End 2012: first electrode  
ceramic plates delivered; 
metallisation pending 
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Challenging PU vacuum tanks 
Cryo-cooling reduces considerably the thermal noise  
originating from the pick-up structures. 
Examples: CERN AC, FNAL 

 

robust, programmable, water-cooled 
linear motor drive units for synchronous  
movement of the electrode double-modules 
 
electrode modules sliding along flexible BeCu  
sheets cooled by cryoheads at 20-30 K   
 
intermediate cryoshield at 80 K 

Highest priority = 
testing the critical  
technical concepts 
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Prototype PU tank at GSI 

2 m long vacuum tank 
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Prototype PU tank at GSI 
2 new linear motor  
drive units 
(designed &  
manufactured in 2012) 

guiding rod 

sliding 
cage  
bearing 
balls 

linear 
motor 

accelerometer 

end 
switches 

dampers 
with 
longer 
braking 
distance spring

s 

light high-strength 
aluminium 

sliding 
carriage 

2013: re-assembly in the tank &  
synchronous tests at room temperature planned  
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Rare isotopes have high Q, hence offer strong signal.  

Faltin electrodes have flat frequency response but are large and insensitive.  

Faltin pick-ups are suitable for pre-cooling of RIBs.  

Plunging is not necessary. 

 

4 Faltin rail pick-ups in 1 tank. 

Palmer cooling signal combination for vertical 
and simultaneous horizontal and longtitudinal cooling. 

Design of the Palmer pick-up for pre-cooling of RIBs  

slots 

Faltin rails 

beam 
chamber 

beam 
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The Faltin rail is divided into cells  
and simulated with the HFSS code. 

Design of the Palmer pick-up for pre-cooling of RIBs  

• The transmission coefficient S21  
is also calculated at each frequency 
to ensure thereare minimal reflections. 

The structure is optimised in the band 1-2 GHz 
• for maximum PU and kicker impedance  
• small and flat output signal phase  
     w.r.t. the particle pulse 
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RF Block diagram of the complete system 

•  2012: First layout of HF signal processing components for all cooling branches 
      typically, small series of HF components with stringent requirements  
      for amplitude flatness & phase linearity in the band 1-2 GHz 
 
•  Ongoing refinements in interplay with lattice/building and physics requirements 
•  Example: specification of the dynamic range for the medium power level amplifiers 
      to cover all foreseen operation modes with beam 
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Example: PU tank signal processing 

Low-noise (NF ≤ 0.5 dB, TN ≤ 35 K)  preamplifiers  
at room temperature (290 K): procurement in 2017 

Beta switch: design ready, 
started in-house assembly 
of the small series 

 PU module controller: 
 to be designed 

C. Dimopoulou, TUAM1HA01, COOL13 



Optical delay line 

ESR Prototype 

4x106 Au79+ ions @ 400 MeV/u 

< -24 dB deep notches within 1-2 GHz ! 

Notch filter (Thorndahl‘s method): 
pushes particles towards the correct 
revolution frequency 

Notch filter with optical delay line 

Machine Beamtime 2012 
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in preparation:  
2 improved notch filters  
for the CR(pbars/RIBs) 



Power amplifiers at the kickers 
 8 kW installed microwave cw power  
      (32 power amplifiers, 250 W each) 

stringent requirements  
    within tight tolerances  
    inside the 1-2 GHz band: 
• constant gain (flat amplitude) 
• high phase linearity 

 
 short electrical length 

Call for tender started 
Large cost factor  
for the SC system 
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Longitudinal cooling of 108 antiprotons 
with notch filter in band 1 – 2 GHz 

main goal: 10 s cycle time  

using the CERN code  
cross-checked with  

T. Katayama/H.Stockhorst  

 t=0, 2.5, 5, 7.5 and 10 s 
 g=150 dB;  t=10 s 

Simulations of cooling of antiprotons  
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Longitudinal cooling (notch filter/TOF) of stable ions with the pickups HL/VL  

Simulations of cooling of heavy ions 
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η f0 Qx  (Qy) Overlap @ 1 GHz Overlap @ 2 GHz 

0.176 1.124 MHz 3.17 (3.67) δp/p (rms)= 5.4 10-4 δp/p (rms)= 2.7  10-4 

• RIB lattice CR68: η=0.176 ; ηpk=0.128; x=0.369 (PU-K/circumference) 
• response of the designed slotline electrodes; no plunging assumed. 

Reference ions (coasting beam) @ 740 MeV/u: U92+ and ion with Q=50 
Initial rms momentum spread δp/p: 
• within notch filter/TOF acceptance 
• small so as to avoid band overlap (not in the FP) 



Longitudinal cooling of 108 U92+ ions 
with notch filter in band  1 – 2 GHz 

But, main goal: 1.5 s cycle time for hot rare isotopes 
(Palmer pre-cooling followed by notch filter cooling) 

using the CERN code, preliminary 

Total cw power  
in the band  

t=0, 0.9, 1.8, 2.6 and 3.5  s 

OK! 
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 g=78 dB  

Simulations of cooling of heavy ions 

Particle noise scales with Q2, thermal noise negligible 
same results for ions with Q=50+ and +6 dB more gain  
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 g=74 dB  

Notch filter 
σp/p = 53·10-4  
in 2.8 s 

t=0, 0.7, 1.4,  
2.1 and 2.8 s 

Simulations of cooling of heavy ions 

108  U92+ ions 

t=0, 1.75, 3.5,  
5.25 and 7 s TOF 

σp/p = 53·10-4  
in 7 s 



t=0, 1.75, 3.5,  
5.25 and 7 s 

σp/p = 53·10-4  
in 7 s 

frequency-domain  
Fokker-Planck  
(CERN code) 
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   Talk TUAM1HA03 

 TOF cooling 
 108  U92+ ions 
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Cooling simulations in the time domain 

time-domain simulation 
by Lars Thorndahl 

Agreement within a few %, also for notch filter cooling! 

t-domain gain is matched to 
the pure coherent effect  
(without undesired mixing)  
for the electronic gain g 
in the f-domain  

 g=74 dB  

Feedback by the beam: 
Schottky signal for open loop  
and closed loop 



Cooling simulations in the time domain 

 notch filter cooling 
 109  U92+ ions 

t-domain gain 
  g=76dB  

σp/p = 21.4 ·10-4  
in 2 s 

g=76dB  

t-domain gain 
  g=76dB  

no incoherent effects 

with incoherent effects 

f-domain;  
with incoherent effects 
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• Procurement contract for the power amplifiers 
 

• Prototype pick-up tank: 
     -Intensive tests of the challenging mechanical concepts at room temperature 
     -First cryogenic test with cryoheads, cryoshield and movable electrode dummies  
     -Commissioning of the testing chamber for linear motor drive units 
 
• Ongoing specification and in-house developments/production  
     of the Palmer pick-up, the notch filters and other HF components 
 
• testing of new operation programs at the ESR stochastic cooling system 
 
• simulations of the system performance have to proceed at low priority and mainly  
    with support from external experts 

 

Next goals  

Thank you for your attention!  
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