

A Cooler Penning Trap to cool highly charged and short-lived isotopes at TITAN

Cool'13, Mürren Switzerland

Usman Chowdhury

TRIUMF & Department of Physics & Astronomy University of Manitoba

Thursday, June 13, 2013

300

300

30 3

300 30

3

300

30 3

300

30

300-

30

KK

κ

mΚ

uΚ

nK

pK

Precision mass measurement

- Explaining astrophysical phenomena ($\delta m/m \approx 10^{-7}$) r-process, rp-process, wait time
 - Test of nuclear models ($\delta m/m \approx 10^{-7/8}$) Shell model, sub-shell closures
 - Metrological standard fixing ($\delta m/m \approx 10^{-10}$) Fundamental constants: charge, mass standard.

• Test of the Standard Model ($\delta m/m \approx 10^{-8/11}$) CVC hypothesis, unitarity of CKM matrix.

Scope of improved mass measurement

CPET cooling

• Electron's self-cooling in magnetic field helps using them perpetually

$$P = \frac{e^4}{6\pi\epsilon_0 m^4 c^5} E^2 B^2$$

• Being light-weight, takes away energy efficiently

$$P = \frac{e^4}{6\pi\epsilon_0 m^4 c^5} E^2 B^2$$

HCI loss energy diving through
the electron clouds

$$P = \frac{e^4}{6\pi\epsilon_0 m^4 c^5} E^2 B^2$$

Proton cooling

- In principle same as electron cooling.
- Advantages:
 - •There is no recombination problem as in case of electron cooling.
 - Loading from off-axis is easier.
- Disadvantage
 - •No significant self cooling because of heavy mass (~2000 times more than that of electron).

CPET simulation

 $\sim 4/B^2$

 $n_e \approx 10^7 / cm^3$

 $N_i/N_e = 10^{-4}$

 $T_{res} = 300K$

 Simulation shows that cooling of HCIs is possible within a fraction of second.

 Electrons self-cool via synchrotron radiation and absorbs energy from HCIs.

 Not too many ions lost due to the recombination during the cooling process.

Current status

- Offline set-up is almost complete. Ion source is ready to be installed.
- Systematic tests with electron source are in progress.

• High transmission efficiency was observed.

May 2013

• Trapping effort is in progress.

CPET control system

LabView interface

Electron through high magnetic field

Solution: * Using thermionic filament with higher and stable current ($\sim 10 \mu A$).

Electron plasma in a harmonic potential

Next steps

- Electron trapping.
- Electron cloud optimization and trapping in nested traps.
- Ion injection and efficiency test.
- Ion trapping.
- Simultaneous trapping of ion and electron.
- Cooling ions with artificial energy spread.
- Commissioning CPET.

Canada Foundation for Innovation Fondation canadienne pour l'innovation

THANK YOU!

- Dilling Jens
- Eberhardt Benjamin
- Gwinner Gerald
- Schultz Brad
- Simon Vanessa

Chaudhury Ankur, Ettanauer Stephan, Gallant Aaron, Good Mel, Kwiatkowski Ania, Klawitter Rene, Leach Kyle, Lennarz Annika, Tegan D. Macdonald, Pearkes Jannicke, Pearson Matt, Seeraji Shakil, Simon Martin.