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Beam Crystallization

• Coulomb crystalline state of an ion beam strongly cooled in a 
storage ring

• Characteristics:
• Ultralow emittance
• Coulomb coupling constant > 170
• Periodic oscillation with the external focusing force
• Stable after removing the cooling force
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3D bunched crystal “Crystal Ball”

● ：Single 24Mg+ ion
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Purpose of the Present Study
• Feasibility of beam crystallization was already predicted if the 

ring and laser conditions were sufficient. (PRL2004, PRSTAB2005)
• However, laser-cooling conditions have been limited in the 

recent experiments at S-LSR.
• Single laser beam, low power, and fixed detuning.

• To show numerically how to attain a low-emittance beam 
using Resonant Coupling and Laser Cooling by assuming 
actual parameters at S-LSR.
• Optimization of a cooling laser for high cooling efficiency

(To be presented at NA-PAC13)
• Fast 3D cooling of low-current beams
• Feasibility of beam crystallization

• Numerical study using a Molecular Dynamics (MD) simulation 
technique.
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Molecular Dynamics (MD) Simulation
• The most reliable simulation technique for the study of 

beam cooling and crystallization.
• Hamiltonian

• Motion of real particles is integrated in a symplectic manner.

• Coulomb potential --- Periodic boundary condition imposed
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Resonant Coupling for 3D Cooling
• A possible scheme for efficient transverse cooling

• H. Okamoto, D. Mohl, and A. M. Sessler, (PRL1993, PRE1994)

• First, introduce a coupling source in the ring.
• RF cavity placed where the dispersion is finite for X-Z coupling
• Solenoid magnet for X-Y coupling

• Then, operate the ring at a difference resonant condition;
for X-Z coupling
for X-Y coupling
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MD Simulation Conditions (1)
• Machine (S-LSR at Kyoto Univ.)

• Circumference 22.56 m
• Superperiodicity 6

• Lattice
• Tunes Case-I  (νx, νy, νz)~(2.07, 1.12, 0.07)

Case-II (νx, νy, νz)~(2.07, 1.07, 0.07)
• RF bunching voltage ~40 V
• Harmonic number 100
• Adiabatic capture 5,000 turns (0.2sec)
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• Beam
• Ion species 40-keV 24Mg+

• Lorentz factors β=1.89x10-3, γ=1.00000179
• Revolution frequency (period) 25 kHz (40 µsec)
• Initial RMS emittance (εx=εy) 1x10-9 π m.rad (Normalized)

5x10-7 π m.rad (Un-normalized)
• Initial dp/p (rms) 3x10-4

From the 
measurement 
result



MD Simulation Conditions (2)
• Laser (1 co-propagating laser)

• Power 8mW
• Spot radius w (2sigma) 0.66 mm (Peak Saturation Power~4.6)

• Detuning ∆ (fixed) -200 MHz
• Cooling time 3 sec

These parameters are rather limited as compared to past 
experiments in TSR & ASTRID.
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MD Results (1: Time evolution)

• The real-space distribution is monitored at a certain position of the ring.
• A peak of cooled ions appears in the center of the x and z distributions within 40ms.
• A vertical peak can be seen at 0.12s.
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(a) Before cooling
(cooling time=0s)

(b) 1,000 turns later
(cooling time=0.04s)

(c) 3,000 turns later
(cooling time=0.12s)

(d) 15,000 turns later
(cooling time=0.6s)
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Fast cooling!

Fast cooling!

Slow

σx=1.1mm

σy=0.78mm

σz=9.9mm
σz=1.3mm

σx=0.18mm

σy=0.22mm

The vertical direction is cooled through the Coulomb interaction 
between ions, although no artificial cooling force is introduced.

Case-I
(νx, νy, νz)
~(2.07, 1.12, 0.07)



MD Results (2: Equilibrium state)
• The ion number of the cooled part (blue ions in the 

picture) is about 100. Namely, the cooling efficiency 
is about 70%.

• Horizontal
• Norm. rms ε=4.6x10-11 [πm.rad]
• Tx=18[K]
• Radius σ=0.18mm

• Vertical
• Norm. rms ε=2.6x10-11 [πm.rad]
• Ty=3.8[K]
• Radius σ=0.22mm

• Longitudinal
• Rms dp/p =2.2x10-5

• Tz=0.45[K]
• Radius σ=1.3mm
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Top-view

Longitudinal phase space

Horizontal phase space

The beam is three-dimensionally cooled, but 
the ordered configuration cannot be seen.
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These values 
agree well with 
the observation 
result in S-LSR!!

Case-I
(νx, νy, νz)
~(2.07, 1.12, 0.07)



MD Results (3: Tune shift)
• The orbits of several ions are Fourier-

transformed to see the time evolution of 
tunes in all three directions.

• The three highest peaks in the power 
spectrum (right pictures) are plotted.

• Result: tune shift
• Horizontal 2.07 --> 2.05~2.06
• Vertical 1.12 --> 1.09~1.10
• Longitudinal 0.07 --> 0.00~0.04

• The synchrotron tune is almost damped 
by laser cooling.

• The beam is still oscillating in the 
transverse direction.
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The laser-cooled beam is three-dimensionally space-charge-dominated.
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MD Results (4: Crystallization)

Beam crystallization is feasible at S-LSR!!
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10 ions per bunch
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Top-view
Time evolution (one turn) of the 
longitudinal positions of the 10 ions

• Each ion does not pass by 
neighboring ions. 

• The synchrotron oscillation is 
fully depressed.

• Even with the limited laser-cooling 
condition, 1D string crystal can be 
formed when the beam current is 
sufficiently low and detuning is small.
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Note that the bunch is positioned forward because the beam is pushed by the co-propagating laser.

Case-I
(νx, νy, νz)
~(2.07, 1.12, 0.07)



MD Results (5: Ideal case)

• More than 90% ions are laser-cooled.
• Transverse norm. rms emittance~1x10-11 πm.rad (Tx,y~10K)
• Longitudinal momentum dp/p~1x10-5 (Tz~0.1K)
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• 1000 ions per bunch
• 3D-resonant tunes:

• (νx, νy, νz)=(2.07, 1.07, 0.07)
• Weak solenoid B=80G

• Laser conditions:
• 2 lasers (co- and counter-propagating)
• High power (100mW)
• Frequency scanned (-4GHz to -40MHz 

for 1sec)

The highest-quality heavy-ion beam can be formed 
just by improving the laser system in S-LSR!!

Case-II
(νx, νy, νz)
~(2.07, 1.07, 0.07)



Summary
• 3D laser cooling of the heavy-ion beam in S-LSR was 

studied using the MD simulation technique.
• The three-dimensionally low-temperature bunched ion 

beam was generated through resonant coupling.
• The MD result agreed well with the observation result in 

the recent experiment in S-LSR.
• Beam crystallization (1D string at low line density) is 

possible even in a limited cooling situation.
• An ultra-low-emittance bunched beam can be formed at a 

high intensity by a combination of powerful laser cooling 
and resonant coupling.
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