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Abstract 
A brief review is made of Coulomb crystallization of a 

charged particle beam circulating in a storage ring at high 
speed. An ideal crystalline state is reached when the beam 
is cooled to near the absolute zero temperature. The 
corresponding emittance is also nearly zero, which means 
that the crystalline beam has the highest quality 
achievable in principle. Through past theoretical studies, 
it has been revealed that beam crystallization is feasible 
only in a storage ring that satisfies several physical 
conditions. This paper summarizes those necessary 
conditions and illustrates why they are so important in 
establishing the ultimate state of a beam. 

INTRODUCTION 
In any practical applications of particle beams, we 

certainly care about the beam quality, or in other words, 
the emittance that represents the phase-space volume 
occupied by the beam. A beam has better quality and is 
thus more useful as the emittance becomes smaller. Since 
the emittance cannot be negative, its ultimate limit is zero. 
An interesting question is whether such an ultimate state 
is physically allowable. If it is, we might raise more 
questions including “what conditions are required to 
stabilize the zero-emittance state?”, “how can we reach 
there in practice?”, etc. 

To the best of the author’s knowledge, the phase 
transition of a charged particle beam toward an ultralow 
emittance state was first discussed by Russian researchers 
when they tried to explain an anomalous behavior of 
electron-cooled ion beams in the NAP-M storage ring [1]. 
Later, John Schiffer and his co-workers performed 
systematic molecular dynamics (MD) simulations 
demonstrating that a one-component plasma confined by 
a uniform external restoring force can form a spatially 
ordered structure at very low temperature [2]. This 
seminal work was followed by further MD studies by 
Wei, Li, and Sessler who incorporated effects from 
realistic alternating-gradient (AG) lattice structures of 
modern accelerators into their simulations [3]. It is now 
believed that the periodic and dispersive nature of a 
cooler storage ring imposes severe restrictions upon the 
realizability of beam crystallization [3, 4]. In fact, nobody 
has succeeded in generating a crystalline beam while very 
low-energy, moving Coulomb crystals were produced in a 
tabletop circular Paul trap [5]. 

This paper focuses on the dynamics of crystalline 
beams, outlining past theoretical progress. After clarifying 
the definition of beam crystallization, we show several 
conditions essential to establish such an ultimate low-
emittance state. We then consider possible cooling 
schemes toward beam crystallization. 

COULOMB CRYSTALS 
In Paul traps [6], it is straightforward to make a variety 

of Coulomb crystals by employing the laser cooling 
technique. Figure 1 shows the fluorescence images of 
actual Coulomb crystals produced in a compact linear 
Paul trap at Hiroshima University. Each bright spot 
corresponds to a single 40Ca+ ion Doppler cooled by a 
semi-conductor laser system to a mK range. The upper 
panel is a picture of the so-called string crystal where 
cooled ions are aligned along the trap axis at almost equal 
intervals. By adding more ions, this simple string 
formation converts into a zigzag structure. Above a 
certain density threshold, the zigzag formation is 
eventually transformed to a shell structure as shown in the 
lower panel. The number of the ion shells increases as the 
line density becomes higher. The structural transitions of 
infinitely long Coulomb crystals can be well explained by 
the Hasse-Schiffer theory [7]. 

The phase transition of a one-component plasma is 
often characterized by the Coulomb coupling constant 
defined as the ratio of the average Coulomb potential 
energy to the thermal energy: 
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where q and 2d are the charge state and the average 
distance of particles, kB is the Boltzmann constant, and T 
denotes the plasma temperature [8]. Regular gaseous 

Figure 1: Fluorescence images of a string (upper) and 
multi-shell (lower) Coulomb crystals produced in a linear 
Paul trap by Doppler laser cooling. 
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beams in regular accelerators have  values much smaller 
than unity. A phase transition to the liquid state occurs 
when  approaches unity by cooling. In a solid 
(crystalline) state,  exceeds 170. 

Note that the temperature is not the simple average of 
particles’ kinetic energies. When the particle ensemble is 
exposed to time-dependent external potentials just like a 
beam in an AG machine, we should be careful in defining 
T. At high temperature, there is no problem to equate T 
with the average of squared kinetic momenta over all 
particles. At ultralow temperature, such a definition 
becomes irrelevant due to strong coherence in the kinetic 
motions of the particles. Since the temperature is a 
measure of random motions, the contribution from the 
coherent beam oscillation to the kinetic energy must be 
subtracted before evaluating T. Otherwise,  cannot be 
large even in a perfect crystalline state because the 
periodic breathing oscillation driven by an AG lattice 
possesses a significant energy. For a reasonable and quick 
estimate of beam temperature, it is convenient to use the 
concept of root-mean-squared (rms) emittance [9]. For 
instance, the transverse beam temperature T  can be 
evaluated from 2 2

B 0( / 8 )( / ) ,k T p m a  where m is the 
particle mass, p0 is the kinetic momentum of the reference 
particle, a is the rms beam size, and  is the transverse 
rms emittance. 

CRYSTALLINE BEAMS 
Crystal Orbit 

Needless to say, the dynamic nature of a crystalline 
beam is very different from that of an ordinary high-
temperature beam. Each particle no longer executes the 
regular betatron and synchrotron oscillations in a 
crystalline state. Instead, all particles coherently oscillate 
at the same frequency and at the same phase. The 
oscillation period perfectly coincides with a unit lattice 
period. In order to maintain a spatially ordered structure, 
the transverse trajectories of individual particles along the 
design closed orbit must be proportional to each other; the 
horizontal and vertical coordinates (x, y) of any particles 
forming a coasting crystalline beam can be expressed as 

(x, y)  (CxDx ,CyDy ),                      (2) 
where the coefficients Cx(y) are particle-dependent 
constants while the periodic functions Dx(y) are universal 
among all particles and satisfy [10] 
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Here, Kx(y) are the beam focusing functions determined by 
the lattice design,  is the local orbit curvature, s is the 
path length along the reference orbit, and  is a constant 
parameter related to the beam perveance and average 

momentum spread. According to the author’s past 
experience, these equations are applicable even for 
bunched crystalline beams. 

Equation (2) indicates that the ratio of the coordinate 
x(y) and the angle dx / ds ( dy / ds ) is independent of 
which particle we choose. All particles are located on a 
straight line in both horizontal and vertical phase planes. 
The transverse emittance  is thus exactly equal to zero 
in an ideal crystalline state except for quantum 
fluctuation. Since 0 , the temperature T  is also zero 
by definition. 

Stability 
If the external beam focusing force is spatially uniform 

and time-independent, we have no trouble stabilizing 
Coulomb crystals. In reality, however, a beam in a storage 
ring is exposed to periodic forces depending on the 
magnet arrangement. Furthermore, the beam orbit is not 
linear but closed. Two lattice conditions must then be met 
to ensure the stability of crystalline beams: 

 The betatron phase advance per lattice period should 
be below 90 degrees [3, 11]. 
 The ring has to operate below its transition energy [3]. 

The first condition is required to avoid crossing a 
dangerous, linear coherent resonance during a cooling 
process toward a crystalline state. If the phase advance 
over a unit lattice exceeds 90 degrees, the operating point 
of the ring inevitably encounters the linear instability 
band at which the beam is strongly heated. This condition 
is essential also in a linear Paul trap employing a periodic 
field for particle confinement. The second condition is 
peculiar to circular machines. Once a crystalline state is 
reached, all particles clearly have the same revolution 
frequency and their orbits never intersect. A particle 
traveling along a radially outer orbit must run slightly 
faster than inner particles whenever the crystal has a finite 
horizontal extent. Above the transition energy, this 
requirement cannot be met because a higher-energy 
particle has a longer revolution period. 

The second condition is usually fulfilled in most cooler 
rings operating at relatively low energy. On the other 
hand, the betatron phase advance of a storage ring is often 
much greater than 90 degrees per lattice period. For 
example, the ASTRID ring where Doppler cooling 
experiments aiming at beam crystallization used to be 
done in 1990’s has the superperiodic number of 4 [12]. 
Since its typical operating tune was over 2, the tune per 
single period exceeds 0.5 corresponding to the phase 
advance of above 180 degrees. The experimental 
observation reported by Madsen et al. has actually pointed 
out the importance of minimizing low-order resonance-
induced heating [13]. The situation is even worse in the 
TSR ring [14], that is, another storage ring equipped with 
a laser cooling system. This is, however, just a matter of 
lattice design; it is always possible to construct a storage 
ring satisfying both conditions above. A real issue is how 
to create a proper cooling force that guarantees an 
ultralow temperature and the stability of crystalline states. 
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COOLING CONDITIONS 
Coulomb crystallization has been realized in ion traps 

all over the world. By contrast, crystallizing a fast 
circulating beam in a storage ring is far more difficult to 
achieve in practice due to several technical reasons. In the 
past, two European groups tried to make a Coulomb 
crystal in their storage rings (TSR and ASTRID) applying 
the state-of-the-art Doppler laser cooling technique, but 
unfortunately, one of the two lattice conditions were 
completely broken which made it impossible to avoid the 
strong transverse instability of the linear collective mode 
[15]. It is interesting to ask what would happen if these 
rings satisfied both conditions. The most likely answer to 
this question is that it is still quite difficult to reach a 
crystalline state. Although the string or zigzag structure 
could be formed with minor modification to the lattice 
[16], we have no chance to establish a stable shell crystal. 
There are a couple of reasons for that, both of which 
relate to the cooling conditions necessary for crystal 
formation. 

Shear Force 
The most essential difference between a storage-ring 

system and a plasma-trap system is whether or not 
momentum dispersion exists. We always need dipole 
fields in any ring to make the beam orbit closed, which 
inevitably causes the dispersive effect; the local curvature 
of each individual particle depends on its kinetic 
momentum. Figure 2 illustrates the orbits of two particles 
(A and B) picked from a crystalline beam with a finite 
horizontal extent. As already explained in the last section, 
the average longitudinal velocity of Particle A must be 
slightly higher than that of Particle B. If the two particles 
are moving at the same speed, the outer one A gets 
gradually behind the inner one B every turn and the 
resultant shear force destroys the crystalline order. This 
suggests that for the stabilization of a crystalline beam, 
we need such a special cooling force as to give larger 
longitudinal velocities to radially outer particles in the 
final equilibrium state. This is often referred to as tapered 
cooling [4, 17]. It is impossible, according to past MD 
simulations [18], to generate stable shell crystalline 
beams without a properly tapered cooling force. 

A simple way to taper the Doppler cooling force has 
been proposed by the TSR group of the Max Planck 

Institute in Heidelberg [19]. Provided that the distribution 
of laser photons is not uniform but has a spatial gradient, 
a weak tapered force becomes available by slightly 
displacing the laser axis from the beam orbit. The tapered 
force can be enhanced to some degree by the use of two 
counter-propagating, displaced lasers [20]. It is, however, 
very difficult in practice to adjust the so-called tapering 
factor to the optimum value [17]. An alternative remedy 
against the shear heating is to employ the dispersion-free 
bending element where an electric dipole field is 
superimposed on a magnetic dipole [21]. This unique 
element is usable unless the beam energy is too high. 

Cooling vs. Coulomb Collisions 
As the phase-space density of a beam rises due to 

cooling, the rate of Coulomb collisions among individual 
particles naturally becomes higher. Conventional theories 
of intra-beam scattering (IBS) predict that the emittance-
growth rate monotonically increases at higher beam 
density [22]. This is true only for regular gaseous beams 
whose temperature is high. Systematic MD simulations 
have revealed an interesting behavior of the IBS heating 
rate as depicted in Fig. 3 [4]. The collisional heating is 
most severe in the liquid phase where the Coulomb 
energy is comparable to the thermal energy; namely, 

1 . In the ultralow-temperature regime, IBS starts to 
be suppressed and eventually disappears when a 
crystalline state is reached. Therefore, if the cooling rate 
is higher than the peak IBS heating rate, the beam will 
encounter no serious obstacle toward crystallization 
except for the shear heating. In case we fail to compensate 
for the dispersive effect, the final equilibrium temperature 
is determined by the balance between the shear heating 
and external cooling forces. Similarly, if the cooling 
power is not high enough to overcome the peak in Fig. 3, 
the temperature reduction stops when the operating point 
hits the high-temperature side of the heating-rate 
mountain. 

It is worthy to emphasize that the mountain-like curve 
in Fig. 3 is obtained only in a storage ring that satisfies 
the stability conditions discussed above. While we have 
no problem designing such a machine, any actual rings 
contain finite mechanical errors. The lattice periodicity is, 
therefore, more or less broken depending on how 
carefully we constructed the machine. When the lattice 

 
Figure 2: Particle orbits in a bending region. 

inner orbit

outer orbit

A

B

 
Figure 3: IBS heating rate vs. beam temperature. 
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symmetry breakdown is strong, the heating rate stays at a 
high level even near the left end of Fig. 3, which means 
that crystallization is not achievable any more [23]. It is 
very important to maintain the original lattice symmetry 
as precisely as possible, so that the betatron phase 
advance per lattice period can approximately be kept low. 

POSSIBLE COOLING SCHEMES 
If there is an extremely efficient cooling method that 

can almost instantly reduce the beam temperature to near 
the absolute zero, we no longer need a storage ring but a 
linear cooling channel might suffice for our purpose. 
Then, the major beam instability sources described in the 
last section just disappear. The system has no transition 
energy and probably no severe resonance (because the 
cooling channel is too short to excite resonances). Most 
importantly, we do not have to worry about the shear 
heating. No such ideal cooling method has, however, been 
invented so far.  

A beam must be cooled very close to the absolute zero 
in order to achieve crystallization. Among modern 
cooling techniques, laser cooling is presently the only 
choice that meets this essential requirement. The Doppler 
cooling limit is typically in a mK range or even below. 
One practical problem of laser cooling, when it is applied 
to fast circulating beams, is that the radiation pressure 
operates only in the longitudinal direction of beam 
motion. It is, of course, possible to apply the laser light 
from the transverse directions, but the cooling efficiency 
cannot be high because of a very poor overlap between 
the beam line and the laser. Although we can expect some 
sympathetic transverse cooling via Coulomb collisions 
[24], such an indirect effect is not only weak but also 
beam-intensity dependent. 

Several simple methods have been proposed to extend 
the powerful longitudinal Doppler cooling force to the 
transverse degrees of freedom [17, 25-27]. The so-called 
resonant coupling method (RCM) is particularly easy to 
implement in practice [25, 26]. All we need is to 
introduce linear synchro-betatron and betatron-betatron 
coupling sources into the ring, and then, drive the 
operating point onto linear difference resonances: 

H V H Linteger, integer,            (4) 
where H , V , and L  are the horizontal, vertical and 
longitudinal tunes of the ring. Linear synchro-betatron 
coupling can readily be developed either by a regular 
radio-frequency (RF) cavity sitting at a dispersive 
position [26] or by a special coupling RF cavity excited in 
a deflective mode [25]. For linear horizontal-vertical 
coupling, we can use a skew quadrupole magnet or 
solenoid. Recently, the RCM was employed in the cooler 
ring “S-LSR” [28] and successfully generated ultracold 
ion beams whose temperature is below a few K in all 
three dimensions [29]. The use of a Wien filter in a laser 
cooling section is another simple solution to artificially 
enhance the transverse cooling efficiency [27]. This 
scheme is applicable, unlike the RCM, to coasting beams 
because it is free from the synchro-betatron resonance 

condition in Eq. (4). The tapered cooling considered 
above for dispersion compensation is also a promising 
means toward beam crystallization [17]. 

CONCLUDING REMARKS 
In spite of past extensive efforts on beam cooling, 

nobody has yet reached a crystalline state in a storage 
ring. Although several very interesting reports have been 
made regarding an anomalous behavior of Schottky 
signals from electron-cooled hadron beams [30-32], the 
observed “one-dimensional (1D) ordering” should be 
distinguished from the formation of a crystalline string. In 
fact, this unique phenomenon is known to take place only 
at extremely low line density. The average spacing 
between neighboring ions are on the order of centimeters 
or even greater while the final beam temperature exceeds 
~1K. Each particle is moving back and forth 
longitudinally in-between the potential barriers created by 
its neighbors [33, 34]. The coupling constant in Eq. (1) is 
then on the order of 1 at most, which suggests that 1D 
ordering should not be categorized as Coulomb 
crystallization by definition [35]. 

Figure 4 is a conceptual sketch of a cooler storage ring 
intended for ultracold beam production. The ring has very 
high lattice symmetry (superperiodicity = 10), but even 
higher symmetry is preferred for crystal stability. The 
bending magnets can be switched to the dispersion-free 
mode by inserting dipole electrodes [21]. Since the 
betatron phase advance must be low to suppress the linear 
coherent resonance, we do not need too many quadrupole 
magnets. In the present example, the bare tunes around 
the ring should be smaller than (1 / 4) 10 2.5  in both 
transverse directions. Reducing the number of lattice 
elements is advantageous also from a practical point of 
view because inevitable field imperfections and 

Figure 4: A possible storage ring for ultracold ion-beam 
generation. 
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misalignments of those elements always become possible 
beam-heating sources. Furthermore, fewer magnets leave 
us with wider spaces for the installation of other 
electromagnetic devices such as the coupling RF cavities, 
Wien filters, skew quadrupoles or solenoids, etc. 

We have no other choice than the Doppler laser cooling 
in order to challenge beam crystallization. 24Mg+ ion is a 
good candidate for laser cooling. Ideally, cooling should 
be carried out in all straight sections. At least two 
frequency-tunable lasers, one co-propagating and the 
other counter-propagating with a beam, are desirable to 
improve the cooling efficiency (and to allow several 
experimental options). It may be useful to have an 
electron cooler as well for precooling initial hot beams. 
As long as we rely on the Doppler cooling technique, the 
RCM and/or other schemes should be employed to ensure 
sufficiently high transverse cooling efficiency that is 
indispensable for the beam to go over the IBS heating-rate 
mountain. It is thus beneficial to introduce as many 
independent coupling sources as possible, so that we can 
try a variety of indirect transverse cooling schemes. Note 
that regular RF cavities are not usable as a synchro-
betatron coupling source when the ring is operated in the 
dispersion-free mode. In that case, the special coupling 
RF cavities must be turned on. In addition to these 
cavities, Wien filters are installed in laser-cooling 
sections. 

Past MD simulations have demonstrated the feasibility 
of generating string or zigzag crystalline beams in a 
properly designed storage ring with linear coupling 
sources [16, 18, 36]. It is, however, practically difficult to 
form a stable multi-shell crystalline structure even in such 
an elaborate ring as illustrated in Fig. 4. For perfect 
stabilization of a shell crystal, it is very important to hold 
high lattice symmetry including coupling sources and 
even cooling forces [18, 36]. 
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