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ABSTRACT 

There have been significant developments during 
the past few years in both numerical and analytic tools 
for computing and understanding the orbit dynamics of 
accelerators. In particular, differential-algebraic tech­
niques can result in unprecedented accuracy in comput­
ing the nonlinear behaviour of accelerators. In addi­
tion, Lie-algebraic techniques provide powerful methods 
of simplifying and understanding this behaviour. The 
application of these techniques to the design and analysis 
of cyclotrons should improve their quality, predictability 
and ease of operation. 

1. INTRODUCTION 
METHOD 

THE TRADITIONAL 

Traditionally, calculations of the orbit dynamics of 
cyclotrons have been done by numerically integrating the 
relativistic equation I) 

d my 
F= - . 
dt~' 

,6 = bJ 
c 

(1) 

with a Runge-Kutta integrator, where the Lorentz force 
is F = q(E + y x B); here E is the electric field, B the 
magnetic field, c is the speed of light and q, m, and y 

are the charge, the mass and the velocity of the par­
ticle, respectively. Also, the usual practice is to inter­
polate the measured midplane field component, B., by, 
for example, Aitken's method or some combination of 
Fourier analysis and interpolation; we shall see that such 
interpolation schemes restrict both the order and the ac­
curacy of higher derivatives of the field, which are ex­
plicitly and/or implicitly required for the analysis of the 
nonlinear behaviour and resonances. Finally, extrapola­
tion of the magnetic field off the midplane is achieved 
by expanding Bz in a Taylor series and using Maxwell's 
equations plus midplane symmetry to determine the co­
efficients as follows: assume B may be derived from a 
magnetic scalar potential <I>(r,8,z) via B = -V<I>; from 
V . B = 0 we see that <I> satisfies Laplace's equation, 
V 2 <I> = o. In cylindrical coordinates, the Laplacian may 
be split into "transverse" and z-pieces, V2 = [Vi + an 
where V 1. and az commute. Since Bz = az<I>, it therefore 
follows that V2 Bz = 0 also. Assuming midplane symme­
try, we expand Bz about the midplane as a Taylor series 
In z, 

The B 2m may be determined by substituting Eq. 2 into 
Laplace's equation and setting like powers of z to zero. 
We find that B2 = - Vi Bz Iz=o, B4 = + V1 B.lz=o, etc.; 
in other words, we must take high-order derivatives of 
the interpolated midplane field B z • Since differentiation 
of interpolated data rapidly results in total loss ofnumer­
ical significance, we are in practice limited to m = 0,1, 
i.e., expansion of the field only to sextupole order. Fur­
thermore, we see why we must require midplane symme­
try: it is impossible to infer az Bz Iz=o if given only Bz 
on the single plane z = o. 

With this approach, it is very difficult to analyse 
resonances with much accuracy. Typically, the determi­
nant of the l't order transfer matrix obtained by differ­
encing the principal rays is only accurate to about 5%, 
and higher order maps will be much less accurate. Thus 
the symplectic condition is violated, and hence Liouville's 
theorem is not satisfied and phase-space is not preserved. 

2. DIFFERENTIAL ALGEBRA - THE NEW 
METHOD 

The limitations discussed above can be overcome 
with the use of differential algebra (DAF)' which allows 
us to accurately calculate the high order behaviour. The 
advantage of DA is that it automatically generates a Tay­
lor series expansion of Eq. 1, or the Hamiltonian of the 
system, about any point in space. The derivatives in the 
expansion are computed to machine precision; there is 
no truncation error. Also, an arbitrary number of vari­
ables with derivatives to arbitrary order can be accom­
modated. 

However, for DA to be used, the electromagnetic 
fields must be expressed in terms of analytic functions. 
This has pros and cons. Extrapolation of an interpo­
lated magnetic field off the midplane does not allow us 
to accurately calculate high order effects in any case, so 
a better approach is needed even without DA. Unfortu­
nately, a realistic and analytic magnetic (and RF) field 
model is in general difficult to achieve and will be much 
more computationally intensive than the traditional ap­
proach. Fortunately, use of a Bulirsch-Stoer3 ) integrator 
wins back much of this 'lost time' plus the bonus of much 
greater numerical accuracy than can be achieved with the 
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traditional Runge-Kutta integrator.* At Chalk River, 
we have developed accurate 3-dimensional models of the 
magnetic and RF fields4 } for the TASCC superconduct­
ing cyclotron, which do not require midplane symmetry; 
the midplane field data is only needed to fix parameters 
of the model. 

2.1. How DA Works 

DA2} is a special algebra that replaces ordinary mul­
tiplication with a new kind of vector multiplication de­
signed to achieve automatic differentiation. Space does 
not permit an extensive exposition of DA, so the rudi­
ments will be illustrated by the following example; the 
interested reader is referred to ref. 2 for details. A DA of 
order n in v variables is denoted nDv and the DA vec­
tor DI = (fo,h,/2""ln), where 10 denotes the scalar 
value of 1= I(x) at x = Xo, (x E RV). The h, h,'" In 
are themselves sub-vectors containing the l,t, 2nd , and 
nth order derivatives of I, respectively. The unit element 
of the algebra is (1,0,···,0) and the unit differentials are 
di = (0,61,6;,···,0) where i = 1··· v and 6i is the Kro­
necker 6. For 2nd derivatives of functions of one variable, 
2DI, the rules of the algebra are: 

(3) 

A*B = (AoBo, AoB1 +BoA 1 , AoB 2 +A 1 B 1 +A2 Bo). (4) 

We see that d = (0,1,0), d2 = (0,1,0) * (0,1,0) = 
(0,0,1) and d3 = (0,1,0) * (0,1,0) * (0, 1,0) = (0,0,0); 
i.e. the algebra is nilpotent at order n. Thus if 
I(z) = z2 at z = 5, we obtain (5,1,0) * (5,1,0) 
(25, 5·1 + 1·5, 5·0 + 1·1 + 0·5) = (25,10,1), but 

DI = (25,10,1) == (/(Z), d:~) , ~ d:fx(;)) x=5 (5) 
which are the coefficients of a Taylor series to 2nd order 

about z = 5. Note: only one function evaluation was 
needed. 

2.2. Application of DA to Cyclotrons 

As we wish to preserve the symplectic condition, 
canonical coordinates must be used, and it is conve­
nient to use the Hamiltonian formulation. The relativis­
tic Hamiltonian in cylindrical coordinates, the "natural" 
coordinate system for cyclotrons, is5} 

{ (
Po +'f')2 }1/2 H = -erAo - r --c- - m 2 c2 

- [P.l - A.l]2 

(6) 

*In our tests Bulirsch-Stoer was from 3 to 5 times faster than 
Runge-Kutta and 106 times more accurate. B-S is ideal for inte­
grating DA problems because all the functions are analytic. 

where H is the momentum in the azimuthal direction, 8 
is the independent variable, r is the radius of curvature, 
Po is the total energy, 'f' is the electromagnetic scalar 
potential, and P.l and A.l, are the transverse compo­
nents of the momentum and the electromagnetic vector 
potential, respectively; Ao is the azimuthal component 
of the vector potential. We make a DA expansion of the 
Hamiltonian 

where q' = r i p/zk p1Tmpr, lsi = i+i+k+l+m+n 
and s! = i!i!k!l!m!n!. In this expansion, the deriva­
tives are with respect to the canonical coordinates, Z = 
(r, P" Z, Pz, T, PT ), of the fundamental cylindrical coor­
dinate system. The differential quantities dq' are mono­
mials of the DA basis vectors which represent the mono­
mials C' appearing in the usual expansion of the Hamil­
tonian (see Eq. 10), where C = (x,Px,z,Pz,t,Pt) are the 
familiar differential canonical coordinates. Hamilton's 
equations in Poisson bracket form are 

Z' = -[H,Z] (8) 

where the ',' denotes differentiation with respect to 8. 
The usual form of Hamilton's equations are readily ob­
tained from Eq. 8. The DA expansion of Hamilton's 
equations have the form 

r' = a~r (H, H" Hpr, Hz, Hpz , HT , HPT"') 

= (Hpr, H pr" H prpr , Hprz, HprpZ ' HprT, HPrPT"') 
(9) 

for the r' equation and similarly for the other coordi­
nates. The straightforward method of obtaining Eq. 9 
is to differentiate the Hamiltonian "by hand" and eval­
uate the "right-hand-side" of Hamilton's equations in 
DA. The resulting DA vectors are integrated numeri­
cally. The result is the reference trajectory, along with 
the usual Taylor series map, or aberration expansion, 

"FIN _ R "IN T. "IN "IN U "IN "IN "IN . 
"i - ij"j + ijk"j "k + ijkm"j "k "m +"', 

(10) 

repeated indices are summed. The superscripts, IN and 
FIN, refer to the initial and final coordinates connected 
by the map. Since DA can expand functions to arbi­
trarily high order, unlike conventional "transfer-matrix" 
codes the order of the Taylor-expanded map Eq. 10 is 
not fixed, but may be freely chosen at run-time. 

One might naively assume that it is easy to use DA 
to take the derivatives of the DA-Hamiltonian, Eq. 7, 
but this is not the case, because the a-operator in DA 
maps n Dv on to n -1 Dv, so that expansion of the Hamil­
tonian to order n results in an expansion of Hamilton's 

Proceedings of the 13th International Conference on Cyclotrons and their Applications, Vancouver, BC, Canada

373



equations only to order n - 1. Thus the nth order terms 
will be in error after the first integration step, the n - 1 
order terms are in error after the second step and so on. 
However, it can be shown (see Eq. 7 and 4) that if the 
first derivatives of H are zero then the problem is circum­
vented and we have a consistent algebra. We can make 
the derivatives zero by explicitly making the canonical 
transformation to the reference trajectory.g) 

A further problem (and difference between DA and 
ordinary calculus) is that the a-operator in DA gives the 
values of the derivatives with respect to the expansion 
variables whereas the usual a-operator generates a func­
tion of the phase space variables at a general point. Be­
cause in our case the expansion variables are the phase 
space variables at the initial azimuth 80 , we do not di­
rectly obtain the derivatives needed for the standard 
form of Hamilton's equations. The Poisson bracket form, 
Eq. 8 allows us to circumvent this problem, because the 
map from initial to final phase-space variables is a canon­
ical transformation, and the Poisson bracket is invariant 
under canonical transformations. Thus the penalty for 
generating Hamilton's equation with DA is that we must 
evaluate H to one order higher than the desired map, 
plus we must make a canonical transformation at each 
step, both of which increase the computation time. 

Eq. 10 plus the reference trajectory are sufficient if 
we are interested only in the behavior of the reference 
trajectory, tunes or phase-space plots. For the study 
of the non-linear behavior, especially resonances, it is 
helpful to transform to a Lie-algebraic representation, 
whIch by presenting the dynamics in a simpler and more 
compact form greatly facilitates understanding. Further­
more, many powerful and elegant theorems of Lie al­
gebras, symplectic groups and symplectic geometrylO) 
are immediately applicable, aiding in the simplification, 
analysis and understanding of the problems under study. 

3. LIE-ALGEBRAIC ANALYSIS 

The Poisson bracket [H, ZJ in Hamilton's equations, 
Eq. 8, satisfies the requirements of a Lie alge bra, namely, 
the commutation relation 

A * B = (A, B) = AB - BA (11) 

and the Jacobi identity 

(A, (B, C)) + (B, (C, A)) + (C, (A, B)) = o. (12) 

Note: This algebra is neither commutative nor associa­
tive. 

The Taylor series map Eq. 10, written as (FIN = 
M(l N, can be transformed6 ) with the help of DA into 
an equivalent Lie-map 

(13) 

where 

.J. def LOO 

:f:n e·· = -_. 
I ' n. 

n=O 

:/:
0 = I = {identity map}, (14) 

and [.,.J is the Poisson bracket7) with respect to the 
canonical coordinates (x, Px, Z, Pz, t, pd. The Lie-map, 
M J, can be factored6 ) into 

where M J and Mn are symplectic maps and In are ho­
mogeneous polynomials of degree n. 

In a circular accelerator, it is desirable that the ref­
erence orbit be a closed orbit (i.e. a "fixed point" of 
the one-turn map); this is, in fact, necessary for the 
transformation to normal form. If the reference tra­
jectory is not a closed orbit, the map, M J, will have 
an Ml factor. The closed orbit can be found from the 
map by solving for the fixed point given by the relation 
(. = MJ( •. If the non-linearities are small and/or the 
initial conditions are not too far from the fixed point, the 
problem converges in one iteration. However, if the non­
linearities in the map are large and we truncate the map 
(which we must invariably do), then the solution of the 
fixed point equation will not be exact, and the process 
must be repeated until convergence is obtained. Once 
the fixed point has been found, the map can be trans­
forme:! by a canonical change of variables ( = A(, such 
that (. = A(. = a => (. = AMJA-l(. = MJ(. = a 
i.e. MJ maps the origin onto itself. 

The Lie-polynomials provide a much more compact 
representation of the map than Eq. 10, and preserve 
the symplectic nature of the map, M, exactly, which 
Eq. 10, when truncated, does not do. With the help 
of DA, Eq. 15 can be transformed into normal form6 ) 

which provides a very powerful method for identifying 
and analysing non-linear behaviour and resonances in 
particle accelerators. 

3.1. Normal Form 

The normal form is the transformation JI 
AMA- I such that JI is in its "simplest" form; M must 
be expanded about a "closed orbit" i.e. no HI terms in 
H, which implies no MI terms in M. The symplectic 
map A is an nth order canonical transformation that iso­
lates the tune shifts and resonances to nth order. Using 
the factored map or alternatively the Taylor map and 
DA, we can normalize M order by order to obtain6 ) 

JI = An·· ·At {AdA2MA21 }A3 1
} A.t l 

.. . A;;-l 

(16) 
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We proceed as follows: From the eigenvectors (they 
must be distinct) of R, Eq. 10, we get a canonical trans-

formation that rescales and block diagonalizes Rj t 

where 

R. _ ( COS(J.Li) 
,- - sin(J.Li) 

sin(J.Ld) (1 
COS(J.Li) , ° 

Next, we normalize M3 

L.) ( 1 
I' ,or ai 

=Rexp{: -(I-R- 1 )G3 +g3 : }.... (18) 

A further simplification results if we expand (I - R -1), 
and g3 in a complex or 'resonance' basis as follows: h± = 
z±ipx,v± =z±ipz' Hence, 

(I-R- 1)ln,m>=[1- L ei(n-m)·J.L]ln,m>, 

and 

g3 = L Anmln,m>, 
n+m=3 

n+m=3 
(19) 

(20) 

n, m, J.L are vectors with components (nl' n2) etc. Sub­
stituting Eq. 19 and Eq. 20 into Eq. 18 and solving for 
G3 , we obtain 

'" Anm G3 = ~ . 
n+m=3 {I - exp[ i(n - m)·J.L J} 

(21 ) 

All terms in g3 can be incorporated into G3 except when 
n - m = 0, or (n - m) . J.L = 27rl, l = integerj i.e. 
(nl - mt}J.Lx + (n2 - m2)J.Lz = 27rlj l = 0, ±1, ±2···. 
The integer l characterizes the resonance. In a similar 
fashion, we could proceed to find G4 etc. 

tThe matrix R is the evaluated representation of the Lie-map e: h :. 
As is common in the literature we will use R to represent both 
the Lie-map and the matrix itself, the choice being determined 
from the context. In fact, if canonical coordinates are used, the 
matrix R obtained from the Lie-map is always identical with that 
obtained from the Taylor-series, Eq. 10, and satisfles the symplectic 
condition exactly (i.e. detlRI = 1). 

A further transformation to action-angle variables, 
h± = ";2Jxe~i"'~, v± = ";2Jze~i"'., leads to 

N exp: {(J.Lx + J.L~PI + J.L~P~·· ·)Jx + 

(J.Lz + .. ·)Jz + ax]; + az ]; + ... }: (22) 

where we have assumed no acceleration and no explicit 
resonanceSj Jx and Jz are the action invariants with as­
sociated angles '{)X and '{)z, J.L are the phase advances, J.L' 
etc. are the chromaticities, and all terms proportional 
to In are non-linear tune shifts. That we can incorpo­
rate all the other non-linearities into A. and "get rid of 
them" makes the analysis of the tune-shifts and reso­
nances much easier! If explicit resonances occur with 
(n-m)·J.L = 27rlj n, m, l = integers, these must be added 
to Eq. 22. Because [J[', Ji] = 0, that is all powers of the 
actions commute, the transformation from factored to 
single-exponent form is straightforward in Eq. 22. How­
ever, if there are resonances in the system, the Campbell­
Baker-HausdorfJformula7 ) or DA must be used to con­
vert to single exponent form. Finally, the normal form 
has the remarkable property that 

(23) 

where n is the number of times the map is concatenated 
with itself. Use of Eq. 23 results in an enormous saving 
of work when applicable. 

4. EXAMPLES AND DISCUSSION 

Cyclotrons are only quasi-periodic and one should 
ideally work with accelerated maps, which our DA ap­
proach allows us to do. However, the dominant features 
of resonance topology can be studied using a simplified 
autonomous (8-independent) Hamiltonian. 

In isochronous cyclotrons, £Ix ~ 1, and the az­

imuthally averaged ("bulk") field Bz ex "( = (1 - /32r
1

/
2 

can be approximated as a constant plus a term pro­
portional to r2j this generates radially increasing bulk­
quadrupole and bulk-sextupole terms when the field 
is expanded about the reference trajectory. The bulk 
quadrupole term is defocusing in the z-plane and is 
overcome by increasing the spiral angle of the hills, 
which produces additional local quadrupole and sex­
tupole terms near the hill edges ("edge" fields) which 
approximately compensate the defocusing effect of the 
bulk field radial variation. Expanded through 3Td order 
about the reference trajectory, the combined effects of 
the bulk and edge fields can be modelled by the vector 
potential 

x+ro 1{ 2 2} Sx{Z3 2} Ae=----Bo-- Qxz +Qzz -- --zz 
2 ro ro 3 

(24) 
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where Qx, Q%, SX, are the effective quadrupole and sex­
tupole strengths, respectively. Inserting this vector po­
tential into the Hamiltonian, Eq. 6, we will investigate 
the leading order nonlinearities and outline the analysis 
of the Walkinshaw or Vx = 21.1% coupling resonance, which 
occurs near extraction in many cyclotrons. As a final il­
lustration of the power of this type of analysis, we will 
show the effect of an octupole field on the orbits in the 
vicinity of the "one-third integer" sextupole resonance in 
a 3-fold symmetric cyclotron. 

Because Eq. 24 is independent of B, the Hamiltonian 
Eq. 6 has the solution 

M(B) = e- 9 :H : (25) 

which can be factored into the form of Eq. 15. As we 
are neglecting acceleration, the energy of each particle is 
conserved and Pt = (Eo - E) / Poe, where E is the particle 
energy, and Eo and Po are the energy and momentum of 
the central trajectory, respectively. 

4.1. Non-resonant Non-linear Behaviour 

We will now apply the normalization procedure de­
scribed in section 3.1 to the map given by Eq. 25. Since 
we assume no explicit resonances, the normal form con­
tains g2 = - [J-Lx Ix + J-L% lz]' the Lie-generator of the "ro­
tation matrix" R, Eq. 17, and 

1 - {32 3 2k; 3 
+ 7rkx --{3- Pt + 7rSx 3 3{33 Pt (26) 

Vx Vx 

Eq. 26 has four chromaticity terms proportional to Pt 
and two time-of-flight aberration terms proportional to 
p~. Here kx = ro/vx , kz = ro/vz . 

If, for the moment, we make Vx = 1 (i.e. the system 
is resonant in the radial plane) then the first term in 
Eq. 26 vanishes. If we also adjust the spiral such that 
Sx = 0 then all the chromaticity terms vanish except the 
second one involving (1- 1.1% ). Under these circumstances 
Rl = Rx = Ix, R2 = R z , and we find that 

= .A3
1Rz e:g,:.A3 (27) 

where 
,(I-vz ) 1-{32 3 
g3 = 4v

z
{3 lzpt + 7rkx v

x
{3 Pt 

and the .A now contain only terms involving z; i. e. all the 
non-linearities involving only the x coordinate cancel! 

In reality, Vx ::::: 1, Sx ::::: 0 (at least on the aver­
age but not necessarily locally) and V z ~ lover most of 
the accelerating region. Hence there is a large vertical 
chromaticity term in the map as is well known, but all 
the radial plane nonlinearities will be small through 3Td 

order. What happens at 4th order is another story! How­
ever, as we pass (adiabatically) through the resonances 
in the horizontal and vertical plane, this cancellation will 
be punctuated by terms with small denominators which 
must be retained (locally) in the normal map. In par­
ticular, in a 3-sector cyclotron, the residual sextupole 
can excite the "one-third integer resonance" in the radial 
plane (see section 4.3). Similarly, a one-forth integer res­
onance can be excited by the octupole field in a 4-sector 
cyclotron, but this is usually much weaker. This analysis 
demonstrates why a 4-sector cyclotron is less affected by 
non-linearities than a 3-sector machine. 

4.2. Walkinshaw Resonance 

In the fringe-field region near the extraction radius, 
we have large sextupole and octupole strengths and the 
magnetic field is no longer isochronous. We will ignore 
the octupole component for the purposes of this discus­
sion, but it can have a profound effect on the stabil­
ity of the orbits. At the Walkinshaw resonance, where 
Vx = 2vz (i.e. (n - m) . J-L = 27rl with l = 0), we have 
a vanishing denominator in Eq. 21. This resonant term 
must be retained in the normal map. We can write the 
normal map, which now includes the resonance term, in 
factored form as follows: 

where g2 = -J-L. I = -[ILx1x + ILzlz] and g; = J-L~Ptlx + 
IL~Pt I., the chromaticities, Eq. 26. The factorization 
of e: Y': into e:Y~:e:Y3: can be done trivially because we 
restrict ourselves to 3Td order in the map. Because 
[lr, IF] = 0, we can easily combine g2 and g; into a 
single exponent as -jl . I = -IL· I + PtIL' . I where 
jl = IL - PtIL', i.e. the new tune is energy dependent. 
The tune-shifted resonance occurs when (n - m) . jl = o. 
The sextupole driving term, 93 is given by 

-S 7r yl2kx k 1 1 / 2 [e i '{'& + e- i '{'&] x 
x 4 z x 

lz [e 2i '{'. + e- 2i ,{,.]. (29) 

In order to understand the topology of this resonance it 
is convenient to transform to the "co-moving" frame 8 }. 

This transformation is defined by the expression 

cPl = k· cp; (n - m) = )'k, ). = integer (30) 

and 

k·l 
Kl = 1fklT2' (31) 

Proceedings of the 13th International Conference on Cyclotrons and their Applications, Vancouver, BC, Canada

376



·25 

a) 

.15 

s .05 

Ul 
0 
u 

;;< -.05 

-.15 

-.2 -.1 0.0 .1 .2 

K1 SIN(ct» 

15 

10 

.05 

w 
z 
« 
-' 0 .00 "-
I 

N 

- .05 

-.10 

-.15 
- . 1 

." ...... 
. ~ .. ~. 

0.0 

X-PLANE 

b) 

.1 

Figure 1. Phase-space plots for the 1Ix = 211. resonance where Vx = 1.195, V. = 0.6025 and the normalized sextupole 
strength is 1.700 units; Jx = 0.0004, J. = 0.0025. a) shows the position of the fixed point at ¢l = 11", the separatrix, 
and trajectories inside and outside the separatrix in order to illustrated the topology. b) J: VS z projection in the 
original space. The parameters place the orbits very close to the separatrix. 

where a is orthogonal to k, (k·a = 0). In our case>. = 1. 
Hence, 

where k = (1, -2) and a = (2,1). Thus, 

K _ Jx -2J. 
1 - 5 ' K 

_ 2Jx + J. 
2-

5 

(32) 

(33) 

The transformation to the co-moving frame is effected 
by the transformation8 ) 

(34) 

where 211"£ = k . 1'. In our case l = 0, and the transfor­
mation is the identity map. We want to expand about 
the resonance, that is we assume that we are not quite 
on resonance, and write k· I' = 211"(1Ix - 211.) = o. Hence 

(35) 

where !/s is in the co-moving coordinates; 

(36) 

We note that there is no ¢2 dependence. Thus we have 
reduced the apparently two-dimensional resonance into a 
one-dimensional form with parameter K 2 • If we combine 
exponents in Eq. 34 so that 

(37) 

we obtain the "pseudo-Hamiltonian" h. The fixed points 
of the resonance can be found in the usual way by setting 
, = Me, which reduces to 

8h 8h 
8K

1 
= 0 and 8¢1 = 0, (38) 

the usual condition for a fixed point if h were the real 

Hamiltonian. This leads tot 

1 - cos(o) 1 
tan(¢l) = - . (0) := -0 «: 1 

SIn 2 
(39) 

and 

21l"k.~Sx[6Kl + 7K2]- oJK1 + 2K2 = 0 (40) 

JKl + 2K2 

which has the solutions 

¢1={0,1I"} and ( 41) 

where we have neglected terms of order 02 in the ex­
pansion of the trigonometric functions. The topology of 
this resonance is rather complicated, being a function of 
0, Sx, and K 2 • The level sets of the pseudo-Hamiltonian 

tIn the non-Lie-algebraic treatment one usually obtains a sine 
rather than a tangent; since 8 is assumed small the two results 
are equivalent to first order. 
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define the contours of normalized phase space and the 
level set that passes through the hyperbolic fixed point 
defines the separatriz of the resonance. 

A phase-space plot for the Vx = 2vz resonance where 
Vx = 1.195, Vz = 0.6025 is shown in Fig. 1; v is the tune 
associated with the chromaticity-shifted phase advance 
fL. Fig. 1 shows the position of the fixed point at <PI = 7r 
and the separatrix, along with trajectories inside and 
outside the separatrix in order to illustrate the topol­
ogy. Here we are working in the Cartesian equivalent of 
K 1, <PI space. This plot was generated by iterating the 
map, M, 3000 times, which is approximately equivalent 
to Eq. 23, 

except that the iterated map generates higher order non­
linearities by "feed-up" which Eq. 42 does not do. 

4.3. One-third Integer Resonance 

In a 3-sector cyclotron, we have 3-fold symmetry 
in the magnetic field. Since Vx ~ 1, the radial phase 
advance per cell is J.Lx ~ 27r/3 and we see from Eq. 21 
that if ni - mi = 3, we will have a resonant condition. 
For the purposes of this discussion, we will treat the (J­

dependence of the sextupole and octupole fields in the 
"kicli' approximation. In this approximation, the map 
for 1/3 of a turn can be written immediately in factored 
form as 

where 

3 

f 
- SxX 

3---
3ro 

and f - Oxx4 
4 - 6ro ' 

( 43) 

and Ox is the octupole strength; we assume that z = o. 
If we transform M(27r /3) into normal form, we obtain 

Sx V; 1;/2 [e3i 'l'x + e- 3i 'l'x] 

4 [Ox + II:S;] 1; ( 44) 

where II: is a factor that comes from "feed-up" from the it­
erated sextupole field (i. e. the generation of higher order 
non-linearities or aberrations from the repeated passage 
through lower order non-linear elements). The octupole 
component has no resonant term for a 3-fold symmetric 
machine, but does generate a tune-shift term. Note also 
that the "feed-up" term is of order S;,. If we neglect the 
g4 component for the moment, and carry through the 
transformation to the co-moving frame as was done in 
section 4.2, we obtain the pseudo-Hamiltonian and the 
equations for the fixed points of the one-third integer 
resonance, 

h~6J _S03V2cos(3rpx)sin(30) 0(S2) 
- x x 4 1 _ cos (30) + x , ( 45) 

sin (3rpx) = 0, 

1 _ Sx 9";21 x cos (3rpx) sin (30) = 0 (46) 
8 l-cos(30) 

where 0 = 27rf. - k·J.L with k = (3,0), and f. = 1. (Here, 
Kl = Ix and <PI = 3rpx, but it is convenient to work with 
the original variables) This has the well-known sol utions 

rpx = {7r/3,27r/3,57r/3}, I = [2V20]2 
x 3Sx 

( 47) 

A phase space plot for the one-third integer reso­
nance is shown in Fig. 2a, where we have truncated the 
map to third order, i.e. only the g3 term is included. 
Addition of the octupole component just adds the term 
ax J'; = 4[ Ox + KS;,]J; to the pseudo-Hamiltonian, h, 
Eq. 45. This term is a "tune-shift with amplitude" term 
(see Eq. 22) and as can be seen from Fig. 2b has a pro­
found effect on the stability of the orbits in this example. 
(The strength of the octupole was chosen to be very large 
in the example so as to clearly illustrate the effect.) It is 
clear from Eq. 46 that the angles of the fixed points are 
unchanged by addition of the octupole, but their actions 
are altered. The latter are given by 

9S;, + 32ax02 
- 3 I Sx I )95'; + 64ax02 

Ix = 64a;02 (48) 

Equation 48 reduces to Eq. 47 as ax ---> o. Although there 
are two solutions to the fixed point equation, Eq. 38, only 
one of them is physically meaningful. 

In this section, we have used simplified models of 
the magnetic field of a cyclotron in order to illustrate the 
power of the Lie-algebraic method. In a real cyclotron, 
Ae is a complicated function of (J, rand z. However with 
DA, we can accurately calculate the non-linear behaviour 
to high order, and transform the Taylor series into nor­
mal form in the Lie-algebraic representation; this gives 
us precise values for the tune shifts and resonance driv­
ing terms. These terms along with the type of analysis 
discussed above allows us to analyse and understand the 
effects of the non-linearities on the orbit dynamics of the 
machine in a very sophisticated manner. 

5. CONCLUSIONS 

In conclusion, we believe that the symbiosis of dif­
ferential algebra and the Lie-algebraic methods provides 
a box of very powerful tools for analyzing and under­
standing the orbit dynamics of cyclotrons up to very 
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Figure 2. Phase-space plots for the "one-third intege";' resonace where Vx = 1.014 (J-L x = 0.338(271")) for various 
values of the initial action, lx . a) normalized sextupole strength Sx = -0.372, and octupole strength Ox = O. b) 
Sx = -0.372" and Ox = -2.0. 

high orders. Although cyclotrons are only quasi-periodic 
devices, maps still provide significant advantages over 
tracking in terms of speed, accuracy, and the ability to 
analyse many orbit-dynamical properties and in partic­
ular resonances. The analysis of resonances is accom­
plished very elegantly by the normal form transforma­
tions. Differential algebra is essential for the efficient 
computation of the maps and of the normal form trans­
formation . 
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