THE YIELDS OF CYCLOTRON PRODUCED MEDICAL ISOTOPES

M. Anwar Chaudhri

Department of Medical Physics, Austin Hospital, Heidelberg, Australia 3084, and Department of Medicine at Austin, University of Melbourne.

<u>Abstract</u>. - The yields of most medical radioisotopes produced with cyclotrons of different sizes through various nuclear reactions, in laboratories around the world, and reported in the literature since 1977, are presented. This compilation, combined with our previous publication on this subject, would be of great assistance in selecting the most suitable nuclear reaction and bombarding conditions for producing a particular radioisotope.

1. <u>Introduction</u>. Production of radioisotopes for medical use is by far the most widely used and profitable application of cyclotrons. Presently, many isotopes are being produced by cyclotrons around the world for research and routine work in fields like nuclear medicine, nuclear biology, etc. Generally, neutron-deficient, carrierfree and short-lived isotopes, which cannot be conveniently or at all produced with a reactor, are produced with cyclotrons. However, at the same time, neutron-enriched isotopes can also be produced with a cyclotron, if required, through nuclear reactions of the type (d,p), $(^{3}He,p)$, (α,p) , etc.

In a recent publication we presented the yields of most cyclotron-produced isotopes of medical interest, which were reported in the literature until 1977. ⁽¹⁾ In that paper we also compared the experimentally obtained yields, under various bombarding conditions, with those calculated under similar conditions using experimentally measured or empirically constructed excitation functions.

In the present paper we have considered only those publications which have appeared since 1977, or which were inadvertently omitted from the previous publication and have since come to our notice. This, combined with our previous publication, should provide the most comprehensive compilation of the yields of cyclotron-produced medical radioisotopes, and help in choosing the most suitable method for producing a particular isotope.

2. <u>Method and results</u>. The production mode and respective yields of radioisotopes at different energies, and from various targets, are summarized in table 2. The yield figures given in the table are either actually obtained production yields or those calculated by authors from experimentally measured excitation functions. In certain cases the yields at saturation (corresponding to irradiation time much longer than the half-life) as calculated by various authors, are also given.

In compiling the table, every effort has been made to include most of the significant published data, since 1977, regarding the production of various isotopes for biomedical applications. However, it is possible that some publications might have inadvertently been omitted.

The actual production cost of any particular isotope, dollars per millicurie, can be easily estimated from the yield figures, the running cost of the accelerator, the cost of the materials and the man-hours involved (which can be seen from respective references). When one does these calculations one finds that, in most cases, the actual cost of producing an isotope is much less than that charged by the commercial organizations.

TABLE 1

THE PRODUCTION MODES AND YIELDS OF VARIOUS CYCLOTRON-PRODUCED ISOTOPES. $T_2^{\frac{1}{2}}$ - half-life, m - minutes, h - hours, d - days, Energy A-B means that the target is not thick, but reduces the energy from A(MeV) to B(MeV), Sat.-yield at saturation. Yields calculated (and not measured) by authors from their experimental cross-sections are indicated by *, and those from theoretically predicted excitation functions by # (Code STAPRE) or ## (Code ALICE).

lsotope	Τ ¹ 2	Reaction	Target	Energy (MeV)	Production Yield µCi/µAh, unless otherwise indicated	Ref.
¹⁸ F	1.83h	¹⁶ 0(α,d)	SiO ₂	55	7000	2
		¹⁶ 0(³ He,p)	H ₂ 0	40	20000	3
		+				
		(³ He,n)				
²⁸ Mg	21 h	Cl(p,6pxn)	NaCl	160	15	4
30 _P	2.5m	²⁷ Al(a,n)	Al	28→10	4740 μCi/μA min. *	5
		³¹ P (p,pn)	PC15	35 → 19	18710 μCi/μ A min. *	
³⁸ K	7.71m	³⁵ Cl(a,n)	NaC1	14.7	1500 μCi/μA (Sat.)	6
		⁴⁰ Ar(p,3n)	Ar-gas	29.8	4400	7
					5200 μCi/μA (Sat.) *	7
48Cr	23h	Ti(³ He,xn)	Natural Ti	135→22	91 *	8
			Natural Ti	3 6 →22	30 *	8
⁵² Fe	8.2h	⁵⁵ Mn (p,4n)	Mn 2.62g/cm ²	70 → 50	200	9
		⁵⁸ Ni(p,3p4n)	Ni 0.45g/cm ²	200→198.6	120	9
		⁵² Cr(³ He,3n)	Natural Cr	33	20	10
			Natural Cr	40	50	11
		⁵⁰ Cr(α,2n)	Natural Cr	65	8 μCi/μAh/gm	12
		Ni(p.spallation)	Ni (Thin)	200	67	10
			Ni (Thin)	588	700 *	13
⁵⁵ Co	18.2h	⁵⁵ Mn(³ He,3n)	Natural Mn 154 mg/cm ²	40→23	103	14
		58N: (p, r)	/5 mg/cm4	3/→29	52	14
		MT(p,d)	138 mg/cm^2	12.079.2	460	14
		Ni + p	Natural Ni 113 mg/cm ²	12.5→9.2	215	14
		⁵⁴ Fe(d,n)	98.19% ⁵⁴ Fe 74 mg/cm ²	10.0→3.9	690	14
		Fe + d	Natural Fe	10.0→3.9	90	14
		⁵⁶ Fe(p,2n)	99.93% ⁵⁶ Fe 321 mg/cm ²	32.0→28.0	1000	14
		Fe + p	Natural Fe 1600 mg/cm ²	40.0→20.0	3780	14
		⁵⁶ Fe(p,2n)	Natural Fe thick	20	400 *	15
			11	25	1800 *	15
			п	30	3000 *	15
			41	35	4000 *	15
			11	40	4500 *	15
		Fe + ³ He	Natural Fe thick	25	21	16
⁵⁷ Ni	36.Oh	Fe + ³ He (⁵⁶ Fe(³ He,2n))	Natural Fe thick	25	32	16
⁶¹ Cu	3.41h	⁵⁸ Ni(α,p) +	Natural Ni 73 mg/cm ²	21	3500	17
		⁵⁸ Ni(α,n) ⁶¹ Zn→ ⁶¹ Cu	11	14	71	18

lsotope	Тł	Reaction	Target	Energy (MeV)	Production Yield µCi/µAh, unless otherwise indicated	Ref.
⁶¹ Cu		⁶¹ Ni(p,n)	Natural Ni 386 mg/cm ²	14	71	18
		⁵⁹ Co(α,2n)	Natural Co 250 mg/cm ²	40	6000	19
			**	30	4000	19
			11	20	1000	19
		⁵⁹ Co(³ He,n)	Natural Co thick	40	112	19
			2.1	30	45	19
			E1	25	24	19
			11	20	8	19
		⁶³ Cu(³ He,αn)	Natural C u 97 mg/cm ²	24	540 *	20
		⁶⁴ Zn(d, a n)	Natural Zn 134 mg/cm ²	15	930 *	21
⁶⁴ Cu	12.9h	⁶⁴ Zn(d,2p)	Natural Zn thick	16	143	22
⁶⁷ Cu	61.9h	⁶⁷ Zn(d,2p) +	Natural Zn thick	16	0.123	22
		⁶⁷ Zn(d,2pn)				
⁶² Zn	9.15h	⁶³ Cu(p,2n)	Natural Cu 360 mg/cm ²	22	2300	23
		Ni + ³ He	Natural Ni thick	23	5600	24
⁶⁷ Ga	78.1h	Zn + α	Natural Zn thick	25	165	25
⁷² As	26h	From ⁷² Se - Generato	or			
⁷² Se	8.4d	⁷⁰ Ge(α,2n)	Natural Ge thick	38.4	16	26
			r i	34	36.5 *	26
			11	25	540 μCi/μA (Sat.)* 27
			13	30	1620 ''	* 27
			14	35	3510 ''	* 27
		75. / / \	11	40	5130 ''	* 27
		′ ³ As(p,4n)	Natural As thick	35	270 "	* 28
				40	15130 ''	* 28
				45	78900	* 28
				50	1/3000	* 28
73 _{Se}	7.1h	⁷² Ge(³ He,2n) +	Natural GeO ₂ 70 mg/cm ²	29→18	174	27
		⁷³ Ge(³ He,3n)	151 mg/cm ²	37→18	403	27

lsotope	Τł	Reaction	Target	Energy (MeV)	Prod unle	duction uCi/µAh, ess othe indicate	Yield rwise d		Ref.
⁷³ Se		⁷² Ge(³ He,2n)	Enriched ⁷² Ge0 ₂ 96.4%	29 → 18		723			27
			11	37→18		933			27
			Natural GeO ₂ thick	15	540	µCi/µA	(Sat.)	*	27
			11	20	2970			*	27
			11	25	5400			*	27
			11	30	8110	11		*	27
			11	35	9460	11		*	27
			н	40	13510			*	27
		⁷⁰ Ge(α,n) +	Natural GeO ₂ 71 mg/cm ²	26→10		218			27
		⁷² Ge(α,3n)	180 mg/cm ²	40→10		537			27
		⁷² Ge(a,3n)	Enriched ⁷² Ge0 ₂ 96.4% 71 mg/cm ²	26→10		0			27
			62 mg/cm^2	40→10		428			27
			Natural GeO ₂ thick	15	810	μCi/μA	(Sat.)	×	27
			TI -	20	4050	н		*	27
			11	25	5950	11		*	27
			11	30	7030			*	27
			11	35	7570	D		*	27
			11	40	10000	11		*	27
		⁷⁵ As(p,3n)	Natural As thick	25	2700	11		*	28
			11	30	94600	11		*	28
			11	35	297300	11		*	28
			11	40	513500			*	28
			11	45	675700			*	28
			11	50	7 838 00	n		*	28
⁷⁵ Br	1.7h	⁷⁶ Se(p,2n)	Se-enriched powder 92.4%	28→22	11800	*			29
		⁷⁶ Se(d,2n)	П	35→29	82000	¥			29
		⁷⁵ As(³ He,3n)	Natural As	34→24	6000	*			29
		⁷⁵ As(α,4n)	13	64→54	7500	*			29
⁷⁷ Br	57 h	⁷⁷ Se(p,n)	Na-Selenate 92.4% ⁷⁷ Se	12→9	430				30
		⁷⁸ Se(p,2n)	Na-Selenate 97.9% ⁷⁸ Se	25→20	4300				30
		Se(p,xn)	Thick natural Se	10	12000 1	uCi∕µA(S	at.) %	ł.	31
			11	15	30000		ş	¢	31

lsotope	T ¹ /2	Reaction	Target	Energy (MeV)	Produc µCi unless inc	tion Yield /μAh, otherwise licated	1	Ref.
⁷⁷ Br		Se(p,xn)	Thick natural Se	20	105000	μCi/μA (Sat.)	*	31
			11	30	286000	11	*	31
			11	40	413000	11	*	31
			n	50	678000	п,	*	31
		⁷⁹ Br(p,3n) ⁷⁷ Kr→ ⁷⁷ Br	KBr Natural	65	82000	*		32
			11	45	48000	*		32
			11	32	10400	*		32
			Li Br	45	85000	*		33
			11	40	60000	*		33
			Na Br	45	68000	*		33
			n	40	48000	*		33
			K Br	32	2300			34
		⁷⁹ Br(p,3n)	Natural Br	25	5000 L	Ci∕µA (Sat.)	*	31
			n	30	54000		*	31
			11	35	146000	11	*	31
			11	40	235000		*	31
			11	50	346000	11	*	31
		Br(p,xn)	Natural NaBr	30	200	*		35
			11	40	3000	*		35
			11	50	5000	*		35
			U.	60	7000	*		35
			11	70	10000	*		35
			11	80	16000	*		35
81, ^{82m} Rb	4.7h 6.4h	Kr(p,xn)	Natural Kr-gas	32→16	17300 (at E.O.B.	+ 3h)		36
⁸¹ Rb	4.7h	⁸² Kr(p,2n)	Natural Kr-gas	32→16	11600			37
		+						
		⁸⁰ Kr(³ He,pn)	⁸⁰ Kr gas 37% enriched	20	226			38
		⁸⁰ Kr(d,n)		8	700			38
		⁸⁵ Rb(p,p 4n)	⁸⁵ Rb Cl thick 100% enriched	70	31200	*		39
		⁸⁵ Rb(p,5n) ⁸¹ Sr	11	70	2300			39
		⁸¹ Sr→ ⁸¹ Rb (After ch	nemical separation fro	om ⁸¹ Sr)	(at 96.4 m	in.))
		Rb + p	Rb Cl thick natural	70	22500			39
		⁷⁹ Br(α,2n)	Natural KBr thick	15	90	*		40
			11	20	500	*		40
			11	25	1000	* •		40
			п	30	2000	*		40
			11	35	2700	*		40

lsotope	Τ½	Reaction	Target	Energy (MeV)	Production µCi/µAH unless otH indicat	n Yield n, nerwise ced	Ref.
81 _{Rb}		⁷⁹ Br(³ He,n) +	Natural K Br thick	15	24	*	40
		⁸¹ Br(³ He,3n)	U.	20	300	*	40
			u –	25	1100	*	40
			11	30	2000	*	40
			11	40	2800	*	40
^{87m} Sr	2.83h	From ^{87^m} Y - 0	Generator				
87 ^m Y	12.7h	⁸⁷ Rb(³ He,3n)	Natural Rb Cl	20	13	*	41
		+	u	25	44	*	41
		⁸⁵ Rb(³ He,n)	ш	30	83	*	41
			11	35	97	*	41
		⁸⁵ Rb(α,2n) +	Natural Rb Cl thick	25	1110	*	41
		⁸⁷ Rb(α,4n)	н	30	1480	*	41
			n	40	1850	*	41
			n	50	2130	*	41
			11	60	2600	*	41
⁹⁷ Ru	2.9d	Mo + α	Natural Mo, 0.15	5 mm 22	26		42
			41	27	66		42
			11	29	75		42
			'' 0.10)mm 25	5 ¹ i		42
			11	27	60		42
		2	11	30	69		42
		Mo + ³ He	1)	30	53		42
123	13.3h	¹²¹ Sb(³ He,n)) Natural Sb, 40 mg/)	′cm ² 23	240		43
		+ 123ch (340 2m))	1	1/5		
		$\frac{123}{30}(100, 50)$	12361 00% 07	40	105		
		$125 T_{0}(n - 2n)$	12555, 99%, 2/m	$1g/cm^{2} 42$	500		44
		(p, 5n)	«re, 95.5% 23	smg/cm~36	050		44
		¹²³ Te(p,n)	¹²³ Te0 ₂ enriched	, to 15→13	4100		44
		124 Te(p, 2p)	83.5%, 86.4 mg/c	m ²	20000		hr
		10(19,211)	to 91.86%, 323 mg/c	20-20 m ²	20000		45
123		$124T_{0}(p, 2p)$	124 Te, 96.5%	26→21	8000-12000) 	46
'		re(p,2n)	ידע בזס mg/cm² ע בזם ע	25.0 27	20/00	÷.	4/
			91 99 11 2h6 11	41 26	1/1000	с. 4	4/
			U <u>415</u> U	20	17500	 *	41/ 1.7
			יי 912 יי	28	33600	*	4/ 1.7
			415	25	18100	#	-7/ 48
				25	1 5 9 0 0	##	48

lsotope	$T^{\frac{1}{2}}$	Reactio	on Targe	ŧ	Energy (MeV)	Production μCi/μAh, unless othe indicate	Yield rwise d	Ref.
123 _J		¹²⁴ Te(p,2n)	91.9% ¹²⁴ Te,	930 mg/cm	28	35400	#	48
			11	11	28	30905	##	48
123 _X	2.1h	¹²² Te(³ He,2n)	73% ¹²² Te	8 mg/cm ²	17.9	7		49
			90.9% ''	132 ''	27	530		50
		¹²² Te(³ He,2n) +	Natural Te		30→25	20		51
		¹²³ Te(³ He,3n)						
		¹²⁷ I(p,5n)	CH ₂ I ₂ + I ₂ cirulating aque solution	eou s	5 8 →48	9000		52
			CH ₂ I ₂ circulat liquid	ing	54	2000		53
			Pure I ₂ melted at 110 ⁰ C		80 + 100	16000 ¹²³ I usin gas gener syste	of g the ation m	54
		¹²⁷ I(p,5n)	CH2 12 + 12		60	400000	*	55
			11		80	950000	*	55
			11		100	1140000	*	55
			11		120	1350000	*	55
					140	1560000	*	55
			u.		160	1730000	*	55
			КI		60	300000	*	55
			П		03	650000	*	55
			11		100	850000	*	55
			11		120	1020000	*	55
			11		140	1180000	*	55
			П		160	1310000	*	55
			KI in H ₂ 0		60	90000	*	55
			t i		80	200000	*	55
					100	270000	*	55
			11		120	325000	*	55
			11		140	375000	*	55
			11		160	420000	*	55
			Nal, 2g/cm ₂		60→44	15300	*	48
			Nal, 2.53g/cm ₂		65→ 46	18400	*	48
¹²⁵ Xe	17h	Te(³ He,xn)	Natural Te, thick		20	20	*	56
			11		25	40	*	56
			11		30	115	*	56
			11		35	180	*	56
			н		40	280	*	56
¹²⁷ Xe	36.4d	¹²⁷ I(d,2n)	CH ₂ I ₂ flowing target		26	60		53

lsotope	Τ <u>Ι</u>	Reaction	Target	Energy (MeV)	Production Yield µCi/µAh unless otherwise indicated	Ref.
167 _{Tm}	9.6d	¹⁶⁷ Er(p,n)	Er ₂ O ₃ , natural	15	20	57
			¹⁶⁷ Er ₂ 0 ₃ , 93%	15	75	57
		Er(³ He,pxn)	enriched Er ₂ O ₃ , natural	40	81 *	58
		(a,pxn)		40	32 *	58
		¹⁶⁵ HO(a,2n)	Ho ₂ 0 ₃ ''	40	49 *	58
			HoCP3 "	32	20	59
¹⁷⁸ Ta	2.1h	Generator	produced from ^{178}W			
178 _W	21.5d	¹⁸¹ Ta(p,4n)	Ta-metal, MeV thick	34	1100	60
			Ta natural, 0.127 mm	40	55	61
			11	47	19.6	61
			11	80	5.4	61
			U.	97	4.0	61
¹⁹⁷ Hg	65h	¹⁹⁷ Au(d,2n)	Gold, natural	22-→8	600 *	62
^{197m} Hg	24h	н	11 11	22→8	1500 *	62
199T	7.4h	¹⁹⁷ Au(α,2n)	Gold, natural, thick	25	470 *	63
			11 11 II	30	1500 *	63
			11 11 11	. 40	2000 *	63
²⁰¹ T1	73h	Decay product	of ²⁰¹ Pb			
²⁰¹ Pb	9.4h	Tl(p,xn)	Thick, natural Tl	45	28200 *	64
			11 - 11	28	5800 *	64
			11 11	24	1800 *	64
		Tl(d,xn)	11 II	33	6300 *	65
			11 11	28	1750 *	65
			н н	25	340 *	65
		²⁰⁵ Tl(p,5n)	²⁰⁵ T1, 99.46%	46→38	2100 (E.O.B. + 32h)	66
			11 11	50→37.5	3550 *	66
			п п	45→37.5	2050 *	66
			13 11	40→37.5	450 * (E.O.B. + 32h)	66
203Pb	52.1h	Tl(p,xn)	Thick, natural Tl	45	7100 *	64
			11 11	28	3500 *	64
			н н	24	1600 *	64

References :

- 1. M.A. CHAUDHRI, IEEE Trans. Nucl. Sci. <u>NS-26</u> (1979) 2281
- 2. C.N.M. BAKKER and F.M. KASPERSEN, Int. J. Appl. Radiat. Isot. <u>30</u> (1979) 61
- J. FITSCHEN, R. BECKMANN, U. HOLM and H. NEUERT, int. J. Appl. Radiat. Isot. <u>28</u> (1977) 781
- 4. H. LUNDQVIST and P. MALMBORG, Int. J. Appl. Radiat. Isot. <u>30</u> (1979) 33
- S.M. SAHAKUNDU, S.M. QAIM and G. STOECKLIN, Int. J. Appl. Radiat. Isot. <u>30</u> (1979) 3
- R.S. TILBURY, W.G. MYERS, R. CHANDRA, J.R. DAHL and R. LEE, J. Nucl. Med. <u>21</u> (1980) 867
- R.M. LAMBRECHT, T. HARA, B.M. GALLAGHER, A.P. WOLF, A. ANSARI and H. ATKINS, Int. J. Appl. Radiat. Isot. <u>29</u> (1978) 667
- R. WEINREICH, H.J. PROBST and S.M. QAIM, int. J. Appl. Radiat. Isot. <u>31</u> (1980) 223
- T.H. KU, P. RICHARDS, L.G. STANG (Jr) and T. PRACH, Radiology <u>132</u> (1979) 475
- R.W. ATCHER, A.M. FRIEDMAN and J.R. HUIZENGA, Int. J. Nucl. Med. Biol. <u>7</u> (1980) 75
- Y. MURAKAMI, F. AKIKA and O. EZAWA, Proc. Symp. New Development in Radiopharmaceuticals and Labelled Compounds, Vol. 1 p. 257, I.A.E.A. Vienna (1973)
- 12. Y. YANO and H.O. ANGER, Int. J. Appl. Radiat. Isot. <u>16</u> (1965) 153
- 13. V.J. SODD, K.L. SCHOLZ and J.W. BLUE, Med. Phys. $\underline{1}$ (1974) 25
- M. WATANABE, H. NAKAHARA and Y. MURAKAMI, Int. J. Appl. Radiat. lsot. <u>30</u> (1979) 625
- 15. M.C. LAGUNAS-SOLAR and J.A. JUNGERMAN, Int. J. Appl. Radiat. 1sot. <u>30</u> (1979) 25
- 16. R.D. NEIRINCKX, Int. J. Appl. Radiat. Isot. 28 (1977) 561
- H. MURAMATSU, E. SHIRAI, H. NAKAHARA and Y. MURA-KAMI, Int. J. Appl. Radiat. Isot. <u>29</u> (1978) 611
- S. TANAKA and M. FURUKAWA, J. Phys. Soc. Japan <u>14</u> (1959) 1269
- Y. HOMMA and Y. MURAKAMI. Bulletin Chem. Soc. Japan <u>50</u> (1977) 1251
- F.A. BRYANT, D.R.F. COCHRAN and J.D. KNIGHT, Phys. Rev. <u>139</u> (1963) 1512
- 21. D.C. WILLIAMS and J.W. IRVINE (Jr.), Phys. Rev. <u>130</u> (1963) 265
- 22. R.D. NEIRINCKX, Int. J. Appl. Radiat. 1sot. 28 (1977) 802
- 23. G.D. ROBINSON (Jr.), F.W. ZIELINSKI and A.W. LEE int. J. Appl. Radiat. isot. <u>31</u> (1980) 111
- 24. R.J. RILEY and R.S. TILBURY, Int. J. Appl. Radiat. Isot. <u>32</u> (1981) 60
- 25. Y. NAGAME, M. UNNO, H. NAKAHARA and Y. MURAKAMI, Int. J. Appl. Radiat. Isot. <u>29</u> (1978) 615
- 26. S.H. AL-KOURAISHI and G.G.J. BOSWELL, Int. J. Appl. Radiat. 1sot. 29 (1978) 607
- 27. M. GUILLAUME, R.M. LAMBRECHT and A.P. WOLF, Int. J. Appl. Radiat. Isot. <u>29</u> (1978) 411

- 28. T. NOZAKI, Y. ITOH and K. OGAWA, Int. J. Appl. Radiat. Isot. <u>30</u> (1979) 595
- 29. A.M.J. PAANS, J. WELLEWEERD; W. VAALBURG, S. REIFFERS and M.J. WOLDRING, Int. J. Appl. Radiat. Isot. <u>31</u> (1980) 267
- A.G.M. JANSSEN, R.L.P. VAN DEN BOSCH, J.J.M. DE GOEIJ and H.M.J. THEELEN, Int. J. Appl. Radiat. Isot. <u>31</u> (1980) 405
- 31. T. NOZAKI, M. IWAMOTO and Y. ITOH, Int. J. Appl. Radiat. Isot. <u>30</u> (1979) 79
- 32. D. DE JONG, G.A. BRINKMAN and L. LINDNER, Int. J. Appl. Radiat. 1sot. <u>30</u> (1979) 188
- M. DIKSIC, J.L. GALINIER, H. MARSHALL and L. YAFFE, Int. J. Appl. Radiat. Isot. <u>28</u> (1977) 885
- 34. R.M. LAMBRECHT and A.P. WOLF, Abstr. 2nd Int. Symp. on Radiopharmaceutical Chem., Oxford, p. 129 (1978)
- 35. H. LUNDQVIST, P. MALMBORG, B. LANGSTROM and S.N. CHIENGMAI, Int. J. Appl. Radiat. Isot. <u>30</u> (1979) 39
- 36. R.M. LAMBRECHT, B.M. GALLAGHER, A.P. WOLF and G.W. BENNETT, Int. J. Appl. Radiat. Isot. <u>31</u> (1980) 343
- 37. T.J. RUTH, R.M. LAMBRECHT and A.P. WOLF, Int. J. Appl. Radiat. Isot. <u>31</u> (1980) 51
- J.C. CLARK, P.L. HORLOCK and I.A. WATSON. Radiochem. Radioanalyt. Lett. <u>25</u> (1976) 245
- 39. T. HORIGUCH!, H. NOMA, Y. YOSHIZAWA, H. TAKEMI, H. HASA1 and Y. KISO, Int. J. Appl. Radiat. Isot. <u>31</u> (1980) 141
- Y. HOMMA and K. KURATA, Int. J. Appl. Radiat. Isot. <u>30</u> (1979) 345
- 41. Y. HOMMA, M. ISHII and Y. MURASE, Int. J. Appl. Radiat. Isot. <u>31</u> (1980) 399
- 42. M. GESSNER, S. MUSIC, B. BABAROVIC and M. VLAT-KOVIC, Int. J. Appl. Radiat. Isot. 30 (1979) 578
- 43. J.R. DAHL and R.S. TILBURY, Int. J. Appl. Radiat. Isot. 23 (1972) 431
- R.M. LAMBRECHT and A. WOLF, Proc. Symp. New Development in Radiopharmaceuticals and Labelled Compounds, Vol. 1., P. 276, I.A.E.A. Vienna (1973)
- 45. R. VAN DEN BOSCH, J.M. DE GOEIJ, J.A. VAN DER HEIDE, J.F.W. TERTOOLEN, H.M.J. THEELEN and C. ZEGERS, Int. J. Appl. Radiat. Isot. <u>28</u> (1977) 255
- 46. K.H. ASSMUS, K. JAEGER, R. SCHUTZ, F. SCHULZ and H. SCHWEIKERT, I.E.E. Trans. Nucl. Sci. <u>NS-26</u> N° 2 (1979) 2265
- 47. K. KONDO; R.M. LAMBRECHT and A.P. WOLF, Int. J. Appl. Radiat. Isot. <u>28</u> (1977) 395
- 48. P. GRABMAYR and R. NOWOTNY, Int. J. Appl. Radiat. Isot. <u>29</u> (1978) 261
- 49. W.J. BLUE, V.J. SODD and K.L. SCHOLZ, J. Nucl. Med. <u>12</u> (1971) 417
- 50. E. LEIBOWITZ, M.W. GREENE and P. RICHARDS, int. J. Appl. Radiat. isot. <u>22</u> (1975) 25
- 51. F. CORNELUSSE, G. DEL FIORE, J.C. DEPRESSEUX and J.M. PETERS, Int. J. Appl. Radiat. Isot. <u>31</u> (1980) 287

References : (cont'd)

- 52. R. BETT, J.G. CUNINGHAME, J.I.S. HILL, I.G. JONES, N.K. TAYLOR, J.A. WINTER and A.L. NICHOLS, J. Radioanal. Chem. <u>56</u> (1980) 237
- 53. A. SCHIMMEL, F.M. KASPERSEN and L. LINDNER, Int. J. Appl. Radiat. Isot. <u>30</u> (1979) 63
- 54. D.L. FRIESEL and W. SMITH, Prog. Nucl. Med. 4 (1978) 63 (S. Karger - Basel, Muenchen, Paris, New York)
- 55. D.B. SYME, E. WOOD, I.M. BLAIR, S. KEW, M. PERRY and P. COOPER, Int. J. Appl. Radiat. Isot. <u>29</u> (1978) 29
- 56. Y. HOMMA and Y. MURAKAMI, Int. J. Appl. Radiat. Isot. <u>28</u> (1977) 738
- 57. R. CHANDRA, P. BRAUNSTEIN and A. THEIN, Int. J. Appl. Radiat. Isot. <u>23</u> (1972) 553
- 58. Y. HOMMA, Y. SUGITANI, Y. MATSUI, K. MATSUURA and K. KURATA, Int. J. Appl. Radiat. Isot. <u>31</u> (1980) 505

- 59. Y. YANO and P. CHU, Int. J. Nucl. Med. Biol. 2 (1975) 135
- 60. B.L. HOLMAN, G.I. HARRIS, R.D. NEIRINCKX, A.G. JONES and J. IDOINE, J. Nucl. Med. <u>19</u> (1978) 510
- 61. R.D. NEIRINCKX, T.H. KU, B.L. HOLMAN, A.G. JONES and P. RICHARDS, Int. J. Appl. Radiat. Isot. <u>30</u> (1979) 341
- 62. A.M.J. PAANS, W. VAALBURG, S. REIFFERS, E.J. de GRAAF, H.D. BEERLING-VAN DER MOLEN, T. WIEGMAN, A. RIGSKAMP and M.G. WOLDRING, I.E.E.E. Trans. Nucl. Sc. <u>NS-26</u>, N° 2 (1979) 2271
- 63. Y. NAGAME, H. NAKAHARA and Y. MURAKAMI, Int. J. Appl. Radiat. Isot. <u>30</u> (1979) 669
- 64. S.M. QAIM, R. WEINREICH and H. OLLIG, Int. J. Appl. Radiat. Isot. <u>30</u> (1979) 85
- J.W. BLUE, D.C. LIU and J.B. SMATHERS, Med. Phys. 5 (1978) 532
- M.C. LAGUNAS-SOLAR, J.A. JUNGERMAN and D.W. PAUL-SON, Int. J. Appl. Radiat. Isot. <u>31</u> (1980) 117.

•