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Abstract.- The linear betatron oscillation is represented by a simple matrix formalism. 
This method is independent of the orbit geometry. The longitudinal motion connected 
to the betatron oscillation can easily be treated. It is proved that the change of the 
orbit due to the acceleration does not affect the revolution time. The general validity 
of the Hamiltonian describing the phase compression effect is demonstrated. 

Introduction 
The traditional way to predict the behaviour 
of beams in cyclic accelerators is to discuss 
the properties of static equilibrium orbits 
and to add special corrections for the effects 
of the acceleration. Recently M. Gordon 1),11) 

and W. Schulte 2) included the acceleration 
in the basic discussion. 

Similar to those just mentioned this work de­
fines an accelerated equilibrium orbit (AEo) 
in order to approximate the behaviour of a 
real beam more precisely than a static equili­
brium orbit (EO) can do. The essential im­
provement lies in its ability to describe the 
longitudinal motion of particles. The results 
are not new, e.g. the isochronism w.r.t. to 
tilted acceleration gaps has been known to 
many people for a long time before Gordon's 
first official pUblication I). The method of 
derivation, however, has definite advantages: 
it is simple and still very general. It uses 
a matrix-formalism based on TRANSPORT notation 
3) to describe the oscillations of a particle 
around its reference orbit. The following 
assumptions are made: 
- the existence of a static equilibrium orbit 

as a first reference 
the validity of an approximation covering 
only linear terms 
the symplectic conditions should hold 4),5) 

- the focussing properties should not change 
substantially between two successive orbits 
(adiabaticity condition). 

In this framework an expression can be derived 
for the phase-oscillation connected to the be­
tatron-oscillation of a particle. In the de­
finition used here, the accelerated equilibri­
um orbit has the same revolution time as the 
static equilibrium orbit. This is proved first 
for accelerating gaps perpendicular to the 
orbit and then for inclined gaps. 

The phase history of a particle in an accel­
erator with radially varying energy-gain is 
described by a Hamiltonian suggested by W.Joho 
6). A general proof for the val idi ty of this 
Hamiltonian is given at the end of this paper. 

The Definition of the AEo 
The first order TRANSPORT-notation 3) is sim­
plified further by neglecting the motion in 
x 3, x 4 (~y, y ') and by in t ro d u c in gas h 0 rt ve c­
tor- and matrix notation 

M X· + d. 8 
l 

(2 ) 

(If the equilibrium orbit of the appropriate 
energy is taken as a reference one can obtain 
0=0). In this formulation the symplectic condi­
t ion s 4), 5) h a vet h e form 

d. = (-R12 

-R22 

Gop 

x, 

o· 
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180· 
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, , 
\ 
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Fig. 1: The de fin i t ion 0 f the A E 0 re qui res 
the periodicity of the phasespace coordi­
nates w.r.t. to the EO of the appropriate 
energy. This reference has to be changed 
after the acceleration. 

The definition of the accelerated equilibrium 
(AEo) orbit is based on a special periodicity 
canctition: after a full cycle of - transfor­
mation, acceleration, redefinition of the 
reference - the phase space coo~dinates have 
to be the same (see fig. 1). 
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The effect of the acceleration on the orbit 
(xac can only contain x'-terms. They are 
usually small but nevertheless important for 
the phase history of the particle. The main 
par~6xeo is the phase-space difference 
between two successive static equilibrium or­
bits separated by the energy gained in the 
acceleration. 

It is now simple to find the starting values 
in phase space for the accelerated equilibri­
um orbit: (I = identity matrix) 

(M 1) -1 ( ) (4a) Xi = - 6Xeo - 6Xac 

Without further derivation the formula for 
the general 
(Ni=partial 

X' = (M -

case of several gaps is given. 
transfermatrix between gaps) 

-1 
I) geff ' M = Nn •• N2 N1 l 

geff = gn+ Nng n- 1+ •• +N n •• N2g 1 

gk = (6Xeo - 6Xac )k 

(4 b) 

The condition that (M-I) can be inverted co­
incides with the need to avoid resonances. 
(trace(M) f 2) 

Formula (4) gives a good estimate of where to 
inject the beam into a ring cyclotron. Only 
in extreme cases does it need to be improved 
by terms of higher order. 

The Phase-Oscillation 
This section is valid for a linear betatron 
oscillation around any reference orbit. The 
difference In in the longitudinal direction 
is considered as a function of the initial 
vector ~ for many crossings of a similar ac­
celerator-section (or repeated crossings of 
the same interval). From equations (1) and 
(2) we get 

11 
T 

+ 10 a Xo 

12 
T + 11 aT M Xo + aT + 10 a X1 Xo 

In 
T n-1 

+ M + I) Xo+ 10 a (M + •• 

where the long sum of matrices can be trans­
formed with simple algebra to 

T -1 n 
In = a (M - I) (M - I) Xo + 10 

In order to get In as a simple function of n, 
the matrix M is now replaced by its Twiss­
representation 

M = I cos(o) + J sin(o), 2cos(0)=trace(M) 

M
n = I cos(no) + J sin(no), J2 = -I 

This gives the general expression for the 
longitudinal motion coupled to the betatron 
oscillation (starting with the vector ~o): 

l(n) = 10 - aT (M - 1)-1 Xo 
T -1 

+a (M-I) Xocos (no) 
T -1 

+a (M-I) JXOsin(no) 

The longitudinal motion performs an oscilla-

t · tIT ( -1 Ion cen ered around 0 - a M - I) Xo 

This center of the oscillation is the rele­
vant phase of the particle in consideration. 
During the acceleration the effects of posi­
tive and negative excursions from this center­
value cancel to first order. W. Schulte 10) 

called the corrected value "center position 
phase" and A. Chabert 8) and M. Gordon II) 

also expressed the need for this correction. 
Formula (5), which is complete to 1st order is 
now applied to the smooth approximation model 
for comparison: 

(- ~;':::(a) M 
--'""--sin(o) ) vr 

cos (a) 

T 1 r 
a -( - sin (a) , 

~ 
( 1 cos (a) ) u r r 

61 
r 

X' 2II h h 
~ 0 , M 2II r 61 ~ X' 

r 0 r 

This expression agrees with the results in 
the papers quoted above, assuming vr = 1 for 
8) and 10) 

The Isochronism of the AEo 
The AEo has the same revolution-time as the 
static equilibrium orbit. This will be proved 
in two parts. 

For the first part,6xac is assumed to be zero, 
i.e. perpendicular crossing of the accelera­
ting gaps is requested and no radial gradient 
of the energy gain is allowed. 

In order to be able to calculate 6xeo, the 
adiabaticity condition has to be introduced: 
it requires that the subsequent equilibrium 
orbit can be approximated as a linear motion 
relative to the original EO (1). This rela­
tive motion must of course be periodic: 

6Xeo f = M Xeo i + d 0 

- (M - l) -1 d 0 

Using equation (4a) the accelerated equili­
brium orbit has the starting value. 

Xi = -(M - 1)-2 d 0 

The difference in length between the two or­
bits is given by formula (2) and the symplec­
tic condition is used to express d in terms 
of _a T 2 

61 = -a (M 1)- d 0 

T -a (M 1)-2(-R12 
-R22 

61 = -aT (10 -1
0

) a 0 0 det(M-I) = qed 

This result ~s general for all gaps in the 
case of several gaps. The difference in length 
between each partial oscillation and the EO 
is zero. 
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The second part of the proof considers only 
6xac from oblique crossings of the gap and 
again neglects radial voltage gradients. The 
additional oscillation on top of the one 
treated in the first part is considered using 
eqn. (4). The difference in length (eqn. 2) 
for such an oscillation around the static 
reference becomes 

11 - 10 = ~T CM - 1)-1 6~ac 
The usage of the symplectic conditions and of 
the fact that 6xac has only x'-terms yields: 

6x'ac 
11 - 10 = CC1 - R22), R12), Q det(M-I) 

The acceleration acts only perpendicular to 
the gap. The parallel part of the momentum PII 
remains constant. 
The derivative of sinew) = PII/P gives: 

cos(w) 6w = - P;I 6p -sinew) ~ 
p p 

6X'ac = 6w = -tan(w) 6 

This 6X 

6x 

61 

61 

Fig. 2: The additional 
length 61 which is need­
ed to reach the inclined 
gap after a radial gain 
of 6x is simply 

61 = 6x tan (w) 

is the first component of 6xeo from 

C6~eo)x C-CM - 1) -1 6) 
(6 ) 

= d x 

-CCR 22 -I), -R12 ) d 
6 tan(w) 
det(M-I) 

11 - 10 qed (7l 

The revolution time of the accelerated orbit 
is shifted just the right amount to reach the 
tilted gap again in the same time as the 
static orbit needs for the period between 
fixed azimuths. 

The extension to several gaps is not trivial. 
If the gaps have different inclinations, the 
phase history is a weighted mixture of the 
different contributions. It might not fit 
anymore to any single gap. 

The Hamiltonian of the Phase-Compression 
In this section one inclined accelerating gap 
(angle=w) per period is considered, having a 
finite thickness described by the transit 
angle u and a radial gradient of the voltage 
Vpk. Uniform voltage distribution is assumed 
across the gap. In such a system the energy­
gain per period and the Hamiltonian describing 
the phase compression effect 6) are: 

dE V k sin(u/2) cos(~) 
dn q p (u/2) ~ 

H 
sin(u/2) 

q Vpk (u/2) sin($) 

aH 
a$ 

Now d¢/dn is calculated using the formulas 
from the above sections. The first part is 
due to the RF-magnetic field 

~ = rot(£) 
dt 

_ ~ cos(w) 
ax g cOS($) 

6X' fb ds / p 

6X' cos(w) 
g w p/q f sin(¢*) ds gap 

-aVpk/aE ~ sin(u/2) 
dx/dp dp/dE p w (u/2) sin($) 

~~ 
dp dE 

fu 
dn 

w 
v 

aVpk/aE ~ sin(u/2) 
1/p 1/v p w (u/2) sin($) 

fu a~ sin(u/2) sin(~) 
dn = - q dE (u/2) ~ 

For the second part, the inclination of the 
gap center line can be neglected according to 
(7), but the relative tilt of a line at phase 
¢* within the gap would ask for a contribu­
tion to d¢/dn. 

~I = $ - $ * dud E 
dn $* u dE dil 

The total d¢/dn from the transittime effect 
is a weighted average over the range ¢~u/2 

fu dE 
dn dn 

d¢2 =q Vpk sin($)sin(u/2)-(u/2)cos(u/2) d(u/2) 
dn . (u/2)2 dE 

As it is required from theory the two parts 
together agree with the partial derivative of 
the Hamiltonian: 

~ 
dn 
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