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Abstract. - Time-of-flight measurements for the internal beam pulses in a cyclotron reveal interesting and 
important features of the internal beam dynamics. Especially in the case of strongly overlapping pulses 
this technique is a valuable diagnostic tool. The following article gives a simplified discussion of the 
method and presents first results obtained at the Hamburg Isochronous Cyclotron. 

I. Introduction. - The Hamburg Isochronous Cyclotron was 
designed for high output currents. Among other things 
this has been achieved by accepting ions out of a 
rather large phase angle interval of about ~~= 300 - 400 

into the acceleration process which unevitably causes a 
corresponding large radial width of the internal beam 
pulses. At radii greater than about one half the extrac­
tion radius of ~ = 560 mm no orbit separation can be 

observed in differential current measurements. Thus the 
only possibility of localizing the radial position of 
individual orbits and getting information about their 
radial shape is the measurement of the time-of-flight 
of the ions (respectively of the beam pulses) from the 
center of the cyclotron to an internal target with a 
well known r adial position R. 

In the conduct of a research proj ec t at the Hamburg 
Isochronou s Cyclotron for the improvement of the inter­
nal and ex ternal beam quality and the extraction condi­
tions s uch time-of-flight measurements were started for 
radii r in the vincinity of ~. 

2. Experimental setup.- A schematic diagram of the expe­
rimental setup is given in figure I : An axial electric 
deflector D on the first orbit works as a gate for the 
beam pulses BP from the ion source I. It is held closed 
by a sufficiently high bias voltage supplied by BV and 
is opened by the output pulses of a pulse generator and 
power stage PG. These pulses are properly timed with 
respect to the RF phase and switch off the bias voltage. 
PG is triggered by the cyclotron RF via a frequency 
divider FD which scales down the original frequency far 
enough to prevent radial overlapping of the beam pulses 
released by D into the further acceleration process. 

The time of arrival of the beam pulse BP at the 
radius R is indicated by the emission of gamma radia­
tion from the interaction of the ions with an integral 
target T whose radial position is controlled by a tar­
get step motor TSM. The gamma radiation is detected by 
a fast scintillation counter SC whose output pulses 
serve as stop signals for a time-to-pulse height con­
verter TPC after being shaped by a timing pulse former 
PF. The start pulses for the TPC are taken from PG. The 
spectra a r e s tor ed in a multichannel analyzer MCA. 

3. Theoretical considerations.- The time spectra S(R,t) 
obtained in tha t way are det e rmined by the radial motion 
of the beam pul se across the front edge of the target 
and in particular reveal the influence of coherent 
radial oscillations on that motion. Fig . 2 schematically 
illustrates the basic facts: Fo(r) describes the radial 

shape of an internal beam pulse under observation on a 
turn number N=No at the time t=to . Both coordinates may 

arbitrarily be chosen as No=O and to=O. 

Fig. I: Experimental setup (schematic). 
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Fig. 2: Schematic history of a beam pulse under cohe­
rent radial oscillations and its interaction with an 
integral target at Fosition R. 
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Under the simplifying assumption that the pulse 
maintains its shape within the region of interest its 
radial motion along a constant azimuth is given by: 

The time is a discrete variable t ; N-T where in a one­
dee-cyclotron T is the RF-period. The velocity v is: 

dr 
v ; cit 6r(N) 

T 

where 6r(N) is the radial shift of the beam pulse on 
the N-th turn. This yields: 

F(r,N). 

An integral target at the position r;R peels off the 
fraction: 

f(R,N) ; F(R,N)-6r(N) 

of the beam pulse per turn. 

If F ; dP/dr means the radial density of the number 
P of ions in the beam pulse then 

f ; dP - 6r ; 6P 
dr 

is the number of ions hitting the target per turn. At 
constant ion energy the number r of gamma quanta 
emitted by the target is proportional to P. Thus a 
time spectrum S(R,t) consists of a series of time peaks 
of equal width proportional to 6CjJ and equally spaced 
by the RF-period T where the intensity of each peak is 
proportional to the number 6r of gamma quanta emitted 
per turn and thus proportional to 6P respectively f: 

S(R, t) ; S(R,N) 'V F [R-N-6r(N)] -6r(N). 
o 

The radial shift per turn 6r(N) is the sum of two com­
ponents: 

6r(N) ; dr(N) + oreN). 

dr(N) is the radial gain per turn due to acceleration 
and 

oreN) 2-1T- (V r -I) -A-sin[2-1T- (Vr-I) -N] 

om - sin[2-1T- (Vr -I) -N] 

lS the radial shift per turn due to coherent radial 
oscillations where vr is the frequency number, A the 

amplitude of the oscillation and om; 2-1T-(V r -I)-A the 

amplitude of Or. oreN) is negative during that half 
period of the oscillation, where the orbit center 
moves backward. 

a.) For dr(N) > Om or A < dr(N)/2-1T-(Vr -I), that is for 

"small" amplitudes A, the total shift 6r(N) is posi­
tive throughout the oscillation period containing 
6N ; I/(Vr-I) turns. This means that the leading edge 

of the beam pulse is gradually and monotonically 
shifted outwards with each additional turn. The total 
number of peaks in S(R,t) is equal to the number of 
turns necessary to push the whole beam pulse across 
the target edge. Figures 3 and 4 show calculated spec­
tra S(R,t) for the case dr(N) > ° under various con-

m 

ditions. The pulse shape Fo(r) used in these calcula-

tions is an asymmetric Gaussian function with a steep 
leading and a flat trailing edge (cf. figure 2): 

for r > r 
o 

and 

for r < r . 
o 

This function appears as the envelope of the first 
spectrum in figure 3. The individual time peaks are 
indicated as bars spaced by T. 

SIR, tl 

Fig. 3: Calculated time spectra for three different 
oscillation amplitudes. 

The three spectra of figure 3 refer to the same 
target position R, the same frequency number vr ; 

1,025 and three different oscillation amplitudes A 
relative to dr(N), whose values are marked in the dia­
gram. The second and third spectra are represented by 
their envelopes only. 

= 20 

S(R,tl 

Fig. 4: Calculated time spectra for three different 
radial positions R of the integral target. 

. 

The three time spectra of figure 4 again plotted as 
their envelGpes refer to the same amplitude A ; 6-dr(N) 
and to three different target positions R with respect 
to a reference position Ro given in units of dr(N). 
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A comparison clearly shows the remarkable feature that 
the initial bump decreases and the following one in­
creases as the target steps outward that means as R 
increases. This feature (cf. figure 2) can be traced 
back to the fact that from R=R to R = R +20-dr the 

o 0 

target approaches the leading edges of the beam pulses 
on those turns where oreN) during the negative half 
period of the oscillation begins to compensate dr(N) 
significantly. 

b.) For dr(N) < Om or A > dr(N)/2-TI-(Vr -I), that is for 

"large" amplitudes A, the shift lIr(N) becomes negative 
for lIN N2-NI turns during the backward motion of 
the orbit centers in a region around the negative 
amplitude Om between the limits given by 

dr(NI) =-or(NI) and dr(Nz) =-or(Nz). If dr, A and V 
r 

are assumed to be constant within that interval the 
number of orbits within these limits follm"s from: 

LIN 
-I 

cos 
dr 

2-TI-(v -I)-A' 
r 

LIN thus depends on the ratio dr/A. The peaks belonging 
to-these orbits do not appear in the time spectrum 
S(R,t), because the beam pulses on these orbits move 
away from the target edge. S(R,t) thus separates into 
two (or even more) groups of peaks. If Vr is known the 

ratio dr/A may be computed from the observed number 
LIN of these "missing peaks" by: 

dr 
A 2-TI-(v -1)-cos[TI-(V -I)-lIN]. 

r r-
(A) 

4. Experimental results.- The first measurements to 
test the usefulness of the method explained above were 
performed with protons accelerated to a final energy 
of 20 MeV. Time spectra S(R,t) were taken for target 
positions R between 490 and 540 mm in lIR = 1,0 mm 
steps. Figure 5 shows three selected and typical spec­
tra plotted as bar diagrams. 

TPI 

stR.II 

Fig. 5: Measured time spectra for three different 
radial positions R of the integral target (protons; 
20 MeV). 

Their structure qualitatively follows that one predic­
ted by the calculations. The corresponding target 
positions RI, Rz and R3 are marked in figure 6. The 
large modulation depth observed indicates large oscil­
lation amplitudes. 

The first time peak of each spectrum S(R,t) labelled 
by TPI in figure 5 marks the outer boundary or leading 
edge of the beam pulse F(r,N) under observation. 
Figure 6 shows a plot of the time tl for TPI versus r. 
Every drop in tl by one RF period T means that the 
target, moving inwards, has touched the beam pulse on 
a preceding orbit. The projection of these steps in tl 
onto the r-axis thus yields the radial distribution of 
the leading edges of the beam pulses on their succes­
sive orbits. 
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Fig. 6: Radial distribution of the leading edges of 
the internal beam pulses (protons; 20 MeV). 

The large gaps in tl around r = 498 mm and r = 519 
mm are caused by the backbending of the beam pulse 
position due to the large amplitudes A. These areas are 
not accessible by the technique presented here. Never­
theless the number LIN of turns for a complete oscilla­
tion period can be counted from figure 6 so that the 
frequency number Vr can be determined accurately. 

LIN = 21 yields vr = 1+I/lIN = 1,048. This makes it 

p03sible to evaluate the ratios dr/A from equation (A) 
by taking the numbers lIN_ of missing peaks from the 
measured time spectra. If in addition dr is calculated 
from the nonrelativistic formula: 

dr 
dE 
E 

o 
r 

where dE is the energy gain per turn, Eo the proton 

rest energy and c the velocity of light, then the am­
plitudes A can be obtained. This is a sufficiently 
accurate approximation at the energies considered here. 
As an example the following table summarizes the 
results from the spectra of figure 5. 
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R [mm] LIN - dr [mm] A [mm] 

501 I 0,83 2,8 
509 3 0,81 3,0 
516 7 0,80 5,4 

The increase of A with r might be due to the 
approach towards the Vr;1 resonance at about r ; 540 
mm. 

Radial oscillation amplitudes can be determined in 
a well known manner by shadow measurements. According 

to the procedures worked out by Richardson I) or 

Garren and Smith 2) A can be evaluated from the diffu­
seness of a current shadow cast by a sharp edged target 
located upstream on an earlier azimuth. Figure 7 shows 
examples of shadow curves for three positions R of the 
target obtained in earlier measurements at our cyclo­
tron (proeons; final energy: 20 MeV). 

Fig. 7: Shadow curves (protons; 20 MeV). 

IS(r
s

) is the internal current measurement on a second 

integral target 190
0 

downstream. The observed diffuse­
ness of lIrs ; 20 mm yields an amplitude of about A ; 5 

to 7 mm at R ; 520 mm in fairly good agreement with 
the value given in the table above. 

In summarizing it should be emphasized that the 
numerical results and conclusions drawn from the 
measurements and discussions are only as accurate and 
reliable as the restrictions and approximations applied 
permit and are valid as long as the motion of the 
internal beam pulses can be represented in the simple 
way sketched in figure 2. Nevertheless the method pre­
sented here supplements other existing diagnostic 
methods and is the only one to get more direct infor­
mations on orbit dynamics in the case of strongly over­
lapping beam pulses. 

Further improvements of the method and its applica­
tions for diagnostic purposes at our cyclotron are in 
progress. 

We gratefully acknowledge the support by the "Bun­
desministerium fiir Forschung und Technologie" and the 
assistance of Dr. Lezoch in the calculations. 
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" DISCUSSION" 

M.F. FINIAN : What is deflector voltage? 

R. LANGKAU : ~ I kV. For details see: Nucl. Instr. & 
Meth. 134 (1976) 15. 

H.W. SCHREUDER : If I understood you correctly, your 
time-of-flight measurements give you the oscillation 
of the beam as a whole, that is to say, the coherent 
oscillation. On the other hand, I think that the 
width of the beam shadow gives you the incoherent 
oscillation. Would vou comment on that ? 

R. LANGKAU : We tried to work out the coherent part 
of the oscillations on the basis of the procedures 
described by RICHARDSON, GARREN and SMITH. The ampli­
tudes taken from the shadow measurements represent 
a rough estimate. 

D.A. DOHAN : We have used a technique similar to this 
to count turns during our separated turn operation. 
I have a question : what sort of magnetic field tole­
rances or stability do you need or did you have in 
these measurements, and how does the 'stability affect 

your results 

R. LANGKAU : The stability of the magnetic field 
in our measurements was better than lIB/B ; 10- 5 • 

D.A. DOHAN : We have used a technique similar to this 
to count turns during our separated turn operation. I 
have a question : what sort of magnetic field toleran­
ces or stability do you need or did you have in these 
measurements and how does the stability affect your 
results? 

R. LANGKAU : The stability of the magnetic field in 
our measurements was better than lIB/B ; 10- 5

• 
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