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ABSTRACT 

Two problems are discussed: the influence of space charge in the electrostatic 
lenses of the guiding system of an axial injection system and the design of a 
bunching system. 

A calculation of the influence of a two-dimensional Gaussian space charge 
distribution on linear beam optics is presented. It is shown that quadrupole 
settings calculated using the space charge distribution agree much better with 
the experimentally observed settings than those obtained from calculations 
neglecting space charge. 

The use of a klystron-type buncher is considered in order to increase the 
current accepted by the cyclotron. The simple bunching theory, ignoring the 
finite extent of the incoming beam, is used to obtain preliminary values of 
modulation voltage and drift space length. It is shown that the modulation does 
not seriously affect the emittance of the axial injection system nor the 
acceptance of the cyclotron centre. A detailed quantitative description of 
debunching effects due to the finite beam size is presented. Debunching effects 
limit the predicted current increase to  a factor of between 2 and 2.5. 

1. INTRODUCTION 

A description of the axial injection system for the Philips prototype compact 
cyclotron has been given recently.'? Present operational experience shows that 
the deuteron current which can be put through the beam guiding system towards 
the deflector (through a 1 cm diam. hole in the pole faces) is limited to  about 
1.4 mA at 7.5 kV. An increase in this current may be obtained either by 
improvement of the ion source (e.g. increasing the luminosity), or by 
improvement of the ion optics of the quadrupole lens system, taking the space 
charge into account. For this purpose we developed a method for calculating 
space charge influence on linear beam optics. This method and its application 
are discussed in Section 2. 

A larger accelerated current can also be obtained by bunching the current 
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emerging from the axial injection ~ y s t e m . ~  An analysis of bunching and 
debunching effects in axial injection systems, leading to a design of a suitable 
bunching system for the compact cyclotron, is described in Section 3. 

2. SPACE CHARGE CALCULATIONS 

2.1.  Introduction 

The ion-optical properties of the beam guiding system are seriously changed due 
to space charge effects at beam current densities of several mA/cm2 and energies 
of the order of 10 keV as are used at present in our axial injection system. 

We shall calculate particle orbits through the guiding system, represented in 
two phase planes. A space charge term is included which follows from a 
two-dimensional Gaussian space charge distribution. A similar method for 
homogeneous beams, given by Kapchinskij and Vladimirskij4 has recently been 
used by Resmini et a15 for calculations on the Berkeley injection system. 

2.2. Method of calculations 

We consider a beam of particles, moving in the z-direction, with an elliptical 
cross-section: 

The eccentricity a of the ellipse is a = y d x M  XM and yMbeing its semi-axes. 
We represent the beam by a number of points in the X, X' and y, Y' phase planes. 
Only particle motion in the X, z and y, z planes is considered. The values of xM 
and yM are found as the X and y-co-ordinates of those points in the X, X' and 
y, y '  planes which have the largest distance from the X'  and y' axis respectively. 
We assume that the cross-section of the beam will remain elliptical when 
traversing the guiding system (see Section 2.4). 

For the space charge density we take the following two-dimensional Gaussian 
distribution: 

where c is a constant to be determined later and xB and y~ are related to the 
beam semi-axes by xM/xB =yM/yB = y, a constant defining the 'flatness' of the 
distribution in the beam cross-section. 

A point P with co-ordinates xp and yp lies on an ellipse with semi-axes xo 
and yo, where xO/xB = yo/yB = P. The space charge density in P is then: 
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If the beam current is I and the particle velocity is v, the constant c can now 
be determined. One finds for the space charge distribution: 

I exp (-P2) 
P @ ,  Y )  = 

n a v x i  [l - exp ( -y2)]  

In order to find the field strength originating from this charge distribution we 
assume that the equi-potential lines V(x, y )  have also an elliptical shape with 
eccentricity a (see Section 2.4). Then the electric field strength in point P 
equals: 

Now E. is found by applying Gauss's law. We obtain: 

I 1 - exp (-P2) 
E, = 

4xo v EO A 1 - exp ( - y2 )  

with eo the dielectric constant in vacuo. The factor A is found from: 

2.3. Numerical integration 

The beam is represented by a number of points in the X ,  X' and y,  y' planes, as 
stated above. From the values of the initial co-ordinates XM and y~ are found. 
Hence a is known and the integral A can be numerically calculated. If the point 
P lies in the X-z plane, the field strength E is: 

I I - exp [-y2 (%S ] 
E =  

4xp v E,, A 1 - exp ( - y2 )  

and if it lies in the y-z plane, we get: 

I - exp [ p 2  (*S ] 
E =  

I '=M 

4yp v % A l -- exp ( -y2)  
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For all points considered, the equations of motion are integrated along a short 
interval dz. Inspection of the positions of the points in the phase planes leads to 
a new value for a (as shown in Section 2.2). Then the integration is repeated, 
using the same value of y. 

In the computer programme, written in ALGOL60, beam passage through 
drift lengths and quadrupole lenses is covered. A second programme, based on 
the same principle of space charge calculation, has been made to compute orbits 
in the cyclotron central region.6 

2.4. Discussion 

Two assumptions made earlier, namely (1) the beam cross-section remains 
elliptic, and (2) the lines of constant V are ellipses with the same a as the lines 
of constant p,  need some further discussion. 

Consider particles moving in a plane X,, zl parallel to the X, z plane. Here the 
width of the beam is smaller by a factor of d .  The points representing the beam 
in the corresponding xl,  X; phase plane must occupy a surface of the same shape 
as those in the X, X' plane. A similar requirement for they, y '  phase spaces is 
needed. The beam cross-section then remains elliptical on passing through drift 
spaces and quadrupole lenses, but it can be shown that space charge forces will 
cause deviations from this shape when a differs from unity. 

The equipotential lines have the same a! as the lines of constant p only if 
a = 1 (circle) as can be readily demonstrated by applying Poisson's law to the 
chosen forms of V and p. 

Though the present representation is not strictly correct it seems to us that 
it is a quite reasonable approximation for those cases in which beams with an a! 
not deviating too much from unity are calculated and for which the influence of 
space charge may still be considered as a correction to the ion-optical 
properties. 

2.5. Results 

The influence of space charge on a symmetric, 1600 mm mrad, 7-5 kV deuteron 
beam passing through a 25 cm long drift space is shown in Figs 1 and 2. The 
broadening of the beam when current is increased from zero to 3 mA is shown 
in curves a and b. The motion remains linear when the charge distribution is 
homogeneous (curve 6, y = 0.01), but when charge is initially concentrated in 
the central part of the beam (curves c and d, y = 1 and y = 2 respectively) the 
trajectories tend to move to the edges and the motion becomes non-linear. 

In the next four figures we show the passage of a 500 mm mrad, 7.5 kV 
deuteron beam through an electrostatic quadrupole triplet (lens length 50 mm, 
internal diam. 30 mm), followed by a 17 cm long drift space. The shape of the 
initial phase space areas is estimated from the source geometry used. At the end 
of the last drift space a quadrupole lens doublet is situated. 

In Figs 3 and 4 we show results belonging to values of the lens strength 
(K1 = 18, Kz = -20, K3 = 16 m-' ) initially chosen from a series of calculations 
neglecting space charge. At the current level used (between 3 and 5 mA) 
especially the X-dimension of the beam gets too large. In Figs 5 and 6 we show 
results for enhanced quadrupole focusing (Kl = 20, K, = -24, K3 = 18 m-'), 
values quite near to the ones experimentally observed (K, = 21, K2 = -24, 
K3 = 17 m-'). Here, the size in the X-direction diminishes when the current 
increases, whereas that in the y-direction slowly increases. 
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Fig. I .  Influence o f  a homogeneous current distribution on a symmetric 1600 mm mrad, 
7.5 kV deuteron beam, passing through a 25 cm drift space 

Fig. 2. Same as Fig. l ,  but with a Gaussian current distribution 

From these and other figures it seems that the current will be limited to 
about 3 mA, as otherwise the beam size in the X-dimension will be too large. 
The conclusion is supported by an observed current of 2.8 mA on a target at 
2.5 cm behind this quadrupole system, when focusing is adjusted to optimum 
transmission. The current on this target can be enlarged by choosing other 
quadrupole settings, but then it is experimentally observed that the current 
transmitted through the total system drops. 
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K1 =l8 TRIPLET 1 
K2=-22 T=0.01 
K3=16 Z 5 k V D  

Fig. 3. Horizontal phase planes between the first quadrupole triplet. Settings from 
calculations neglecting space charge 

Fig. 4. A s  Fig. 3, vertical phase planes 
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Fig. 5. A s  Fig. 3, increased focusing optimised for i = 3 m4 

Fig. 6. As  Fig. 4, increased focusing optimised for i = 3 mA 
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A calculation of all quadrupole settings is at present being performed. The 
first results indicate that at 7.5 keV deuteron energy 3 mA must be considered 
as an upper limit in the present system. 

3. CALCULATIONS ON A BUNCHING SYSTEM 

3.1 . Introduction 

In a klystron-type7 buncher a small sinusoidal modulating voltage Vm sin n o t  
(with o the particle angular velocity in the cyclotron and n the harmonic 
number of the accelerating rf field) is applied to a beam of particles with energy 
eVo . Bunches are formed in a drift space with length 1. 

The relation between the rf starting phase cpo of a particle and its phase p, 
after traversing the drift space is: 

where cp, = nwl/vo (with v. the initial particle velocity) is a constant for all 
particles and can hence be ignored. The factor p, the bunching parameter, is 
given by p = (nol/2vo) (Vm/b). It must lie between 1.4 and 1.8 to obtain optimum 
bunching  condition^.^ We shall use this expression to choose, for a reasonable 
value of p ,  the initial values of Vm/Vo and l. 

Due to the velocity modulation applied, the emittance of the axial injection 
system will vary in shape and position. Furthermore, the acceptance of the 
cyclotron centre can change for particles with different longitudinal velocities. 
We shall investigate whether these effects influence the matching of the axial 
injection system and the cyclotron central region. 

After these considerations the debunching effects will be studied. Debunching 
is caused by: 

(a) energy spread of source and extractor, 
(b) different path lengths due to non-zero beam quality, 
(c) longitudinal space charge (especially for very short bunches). 
In the following discussion the last named effect is not further treated. 

3.2. Matching of emittance and acceptance 

An energy variation of +0.5% in the incoming beam is expected. We want a 
much higher value of the modulation depth and will use Vm/Vo = 0.1. For 
p = n/2 we then find l = 8 cm when n = 4. 

In a recent paper2 we showed that the emittance of the axial injection system 
and the acceptance of the cyclotron centre are matched in a plane just behind 
the deflector. We now calculated the displacement of the emittance using our 
analytical  formula^.^ In the horizontal phase plane the shifts amount to f 0.1 mm 
and f0.025 radians, and in the vertical phase plane 20.5 mm and 0 radians. 
These displacements will enlarge the emittance by about 20%. 

The acceptance of the cyclotron centre was tested by calculating orbits 
starting with e ( b  + 0-1 G )  at several representative starting poink2 The 
horizontal motion is hardly affected by this modulation: the orbit centre 
positions vary by less than 1.5 mm as is shown in Fig. 7 for a typical case. The 
vertical focusing does not change much either (see Fig. 8, same case as Fig. 7). 
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0 O-J 
1 2 3 G 

REWXUllON NR. REVOLUTION NR - 5  t 
Fig. 7. Orbit centre displacements in X and ydirection for 10% modulation in starting 
energy 

- 
REVOLUTION NR. REVOLUTION NR. 

Fig. 8. Some vertical orbits for 10% modulation in starting energy 

Fig. 9. The co-ordinate system used in the calculation 
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From these calculations we find that there will be only minor changes in the 
matching conditions between injection system and central region. 

3.3. Definition of a co-ordinate system 

Recently we derived analytical formulas representing particle motion through an 
axial injection system with a plane electrostatic deflector.' In the next section 
they are used to obtain detailed expressions. Here we shall briefly review the 
nomenclature used; a complete description is given in reference 8. 

The calculations are performed in the X, y, z co-ordinate system shown in 
Fig. 9. The y-axis lies in the front plane of the deflector, whereas particles enter 
along the z-axis. Dimensionless momentum and co-ordinate values are used 
throughout the calculation. Momenta are made dimensionless by dividing by 
pzo, the initial momentum of a particle with zero modulation travelling along 
the central orbit. Co-ordinates are divided by r ,  the radius of this particle in the 
cyclotron magnetic field. Thus: 

X Y z Pz X=-, p =Ex  y=- p = 4, z=- p =- ,  
X Y 9 z r Pzo r Pzo r Pzo 

It is convenient to use time units T = at. 

The normal to the deflector is at an angle a to the positive x-axis. The first 
accelerating gap, which is intersected at right angles by the central orbit, is at an 
angle P to the positive x-axis. 

Values of momenta and co-ordinates at different places are denoted by 
subscripts i (e.g. Xi, Pxi, etc.) in the following manner: i = 0 starting plane 
(situated in the field-free region), i = 1 entrance of fringing field, i = 2 exit of 
fringing field, i = 3 entrance of deflector, i = 4 exit of deflector, i = 5 first 
accelerating gap. 

The following transit times have been calculated for a particle travelling along 
the central orbit: 

T -  between starting point and fringing field (0- 1) 
rd between fringing field and deflector (2-3) 
T, in the deflector (3 -4) 
rg between deflector and first accelerating gap. 
After deflection, the horizontal orbit is characterised by its orbit centre 

co-ordinates X, and Y,, together with the radius R. 

3.4. Formulas 

For a particle travelling along an arbitrary paraxial path the differences in transit 
times AT-,  AT^, etc., due to variations in the initial co-ordinates and momenta, 
can be calculated. We find: 
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CURRENT 
INCREASE 

Fig. 10. Bunch shape neglecting debunching effects 
( p  = n/2, VmIVo= 0 1 ,  7f= 4.97, I-,,,= 1.88, p =  n/2) 

Fig. I I .  Spread in arrival phase q due to non-zero beam quality and due t o  energy 
variations in the ion source 

t 1.0 

RELATIVE 
INTENSITY 

BEAM OUAUTY 

I 1 - 1 0 1 
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A = ( l  -cos@Xc+sin/3 @+-l) + (l  c O s T m  -X$ 
tan a T, tan a 

The total difference in transit time 

can be expressed in the initial co-ordinates and momenta as: 

The coefficients al, a2, etc., are found using transformations given in reference 8: 

a1 = % [ l  - COS P + (Tm - sin P) (sin rd + %Tm COS rd)] 

a2 = - sin p + %rf (1 - cos 0) + (Tm - sin 0) [% (T-+ 7,) sin ~d + 
+ (% Tf Tm - 1) COS Td] 

a, = % [sin p + (Tm - sin 0) (%rm sin - COS rd)] 

a4 = % rf sin + (I - cos 0) + (rm - sin p) [(% ~f Tm - I) sin ~d -%(~f+  Tm) COS ~ d ]  

as = rf + rd + sin p. 

3 .S. Calculations 

For the compact cyclotron axial injection system the following parameters are 
given: rd= 1.88, Tm = 0.953, and /3= n/2. 

The place where the particles are modulated can now be determined 
accurately. A particle starting at qo = n/2 gets a velocity Pzo = 0.950. With the 
p-value used, the particle will have cpl = 0 at the end of the drift space. Thus, for 
AT = n/8 (since n = 4) we obtain rf= 4-97. 

The shape of the bunch obtained in this case (neglecting all debunching 
effects) is shown in Fig. 10. The bunch width amounts to 0.75 radians. 

We assume the incoming beam to occupy in both phase planes a rectangular 
surface of 6 X 84 mm mrad. The spread in arrival phase ql due to non-zero beam 
quality was calculated by picking out at random a large number of particles 
from the incoming beam. For all these particles cpo = 0 and Pzo + 1 = 0. The 
coefficients a,, a2, a,, and a4 are found to be: al = 0.481, a2 = 1.355, a3 = 0-482, 
a4 = 3.435. The distribution in arrival phase pj obtained is shown in Fig. 11, 
yielding a spread of 1 -5 radians FWHM. 

When the initial beam already has a 1% FWHM energy distribution, the 
resulting spread is shown also in Fig. 11. It amounts to 0.3 radians FWHM. 

3.6. Conclusion 

It is shown that the debunching originating from non-zero beam quality strongly 
determines the minimum bunch width that can be obtained from our system. 
The shape of the bunch can be found by superimposing the distribution due to 
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the debunching effects on the ideal bunch shape. Then we predict an 
improvement in current by a factor of between 2 and 2.5. 

A better result might be obtained when the actual beam quality is better 
(e.g. if some of the beam were intercepted in the guiding system) or when the 
distribution of the particles over the co-ordinates and momenta is not 
homogeneous (as was assumed in the calculation of the debunching effects). 
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