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ABSTRACT 

In this paper some factors which have a large influence on the beam properties 
of A.V.F. cyclotrons are discussed. The connection between injected beam and 
extracted beam is considered without going into detailed orbit dynamics. This 
results in a qualitative prediction of the time, energy and geometry structure of 
the external beam as a function of the injected beam parameters. 

Remarks on the beam dynamics of the first few turns are given, using our 
general orbit theory. Some numerical calculations on the axial motion are 
presented, taking into account space charge effects. 

1. INTRODUCTION 

A particle in an A.V.F. cyclotron can be represented in a three dimensional 
space of which two co-ordinate axes belong to the radial motion and one to the 
rf phase angle [the (A ,  8, @)-space]. 

A beam can be represented by a part of this space or of a subspace. In first 
approximation there is no need to describe the energy of the beam as it is 
strongly coupled to the rf phase. 

The coupling between radial and axial motion will be neglected. To further 
simplify the reasoning in Sections 2, 3,  and 4 only a linear radial motion is 
considered. 

In Section 2 the volume in the (A,  8, @)-space yielded by the ion source with 
or without diaphragms will be discussed. Then in Section 3 the conditions for 
single turn and multiturn acceleration are shown. The influence of slits in the 
external beam handling system on the volume in the ( A ,  8 ,  @)-space occupied by 
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the beam is given in Section 4. This results in conclusions about the external 
beam properties. 

Sections 5 and 6 deal with some remarks on slits and grids in the cyclotron 
centre in connection with axial focusing. In Section 7 numerical results about 
the axial beam envelope in the cyclotron centre are given, taking into account 
space charge effects. 

2. THE INJECTED BEAM 

Due to the rf acceleration in an A.V.F. cyclotron there is a very strong coupling 
between the starting phase at which the ions leave the internal ion source and 
their energy.' This coupling persists throughout the whole acceleration. Only 
when particles are injected through an axial injection system with a large energy 
spread-comparable to the energy gain per turn-may this coupling be made 
unobservable in the external beam. 

The radial phase space area delivered by an ion source after the first gap 
crossing may be a square or may have an elongated shape for particles starting at 
the same rf phase. This is shown in Fig. l ,  where orbit centre co-ordinates are 
used. Mallory and   loss er^ have found radial phase space area equal to 300 mm 
rnrad for protons of 35 keV with a d.c. current of 2-7 mA. [Their latest results 
show a smaller value at the same current and energy3(30 mm mrad).] These 
qualities can be expressed in orbit centre co-ordinates. Then for an orbit radius of 
20 mm an area of 15 mm2 corresponds to 300 mm mrad. Due to the special ion 

Fig. I The radial phase space in orbit centre co-ordinates emitted by an ion source 
(a) without and (b) with a diaphragm. The dashed figures show a shift due t o  a different 
starting energy. The phase space figures belong to particles at azimuthal positions just after 
the diaphragm ( S ) .  I is the ion source and D the dee 
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Fig. 2. The two surfaces Si and S: are shown in the (Xi, Yi, 0)- or ( A ,  ei, 0)-space 

source geometry they found a rather elongated figure which gives in the orbit 
centre co-ordinate space an area with the dimensions 1 Y 15 mm2. 

If now the ions start at a different rf phase the extraction voltage is changed. 
Then the orbit centres will shift away and will take new positions indicated by 
the dashed lines in Fig. 1 ." In Fig. l(a) the two areas still overlap, in Fig. l(b) 
they do not. This means that in the first case an area in phase space can be 
given which contains particles within a relatively large rf phase and energy range. 
Thus a beam in the cyclotron is represented by a volume in the (X, Y, @)-space, 
where X and Y are the orbit centre co-ordinates and @ the rf phase of the particles. 
Instead of X, Y co-ordinates it is more convenient to use the polar co-ordinates 
A, 8, where A equals the radial oscillation amplitude and 8 the radial oscillation 
phase. In the second case [Fig. 1 (b)] each area has a reasonably well defined rf 
phase and energy so that all ions will lie in a thin sheet in the (A, 8, @)-space. 
The thickness of this sheet depends linearly on the width of the phase space 
area. Also a sheet is formed when a diaphragm is positioned 180" away from the 
ion source yielding an area shown in Fig. l(a). The thickness of the sheet then 
depends linearly on the aperture of the diaphragm, which may be as small as 
0-1 mm. 

A sheet will be represented by a surface Si:  

Si = Si (A, Oi, 9) = 0 

where the suffix i means the ion source with or without a diaphragm. A second 
diaphragm placed at a different aximuthal and radial position yields a second 
sheet Sil,  when transformed back into (A, 8, @)-space given above. Now only the 
line cross-section Li of the two sheets will be accelerated in the cyclotron. When 
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v, = 1 and when the azimuthal position of the second diaphragm differs by 180' 
from the position of the first one, the line Li coincides with a line of constant @ 
in each surface. Then we have a situation which is well suited for single turn 
extraction (Fig. 2). 

It must be noted that due to space charges-at enhanced beam currents-the 
radial oscillation frequency v, may deviate from unity.' Then for single turn 
extraction the azimuthal positions of the diaphragms have to differ from the 
above given values. 

Besides surfaces arising from diaphragms in the cyclotron centre, surfaces 
corresponding to limitations in the extraction system and beam handling system 
can be defined in the initial (A, €li, @)-space. This will be considered in 
Section 4. 

3. THE SINGLE AND MULTITURN MODES OF OPERATION 

Single turn extraction has been adequately described by Gordon in a paper at the 
Gatlinburg conference? Experimental material has been given by m loss er! Details 
about multiturn extraction are given in reference 7. We shall make here a few 
remarks valid for single turn and multiturn extraction without going into details. 

The energy and rf phase of the particles are so strongly coupled that in first 
approximation the energy is only a function of G, with the turn number as a 
discontinuous parameter. This approximation is valid as long as we assume very 
small radial and axial oscillation amplitudes1 and negligible space charge effeck8 

If now by means of an analysing system the energy spread of the external 
beam is cut down to a very small value (much less than the energy gain per turn) 
one will observe a discrete rf structure in the beam!76 The smaller the energy 
spread of the analysed beam the larger a part of the total intensity will be found 
at the region with smallest phase excursions (i.e. around @ = 0). The rf phase of 
particles with minimum turn-number and the right energy is put equal to @ = 0 
(see Fig. 3) at injection. 

The discrete rf phase regions come closer together when the number of turns 
in the cyclotron becomes larger (i.e. for a low dee voltage). The distances between 
these regions become smaller for larger @ values. Both statements follow from an 
equation given by Gordon? If we assume a homogeneous distribution of the 
particle density in the (A, 8i, @)-space, we shall observe that the intensity per 
unit phase interval is proportional to GE/AE, where AE is the energy increase 
per turn and 6E the energy width of the analysing system. The intensity of the 
particles in the region @O(i.e. the top of the parabola) is proportional to 
(6ElAE)S. Therefore decreasing 6E appears to favour relatively these central 
phase particles. 

The maximum distance between two rf phase regions occurs for the phases 
@ = 0 and @ = and is given by A@, = (2/N)s, with N the number of turns, 
assuming 6E = 0. This corresponds to a time interval of 0-5 ns in a cyclotron 
with N = 400 and a frequency of 24 MHz. If 6E is not neghgible we find 

For 6ElAE c 0-1, A@, corresponds to 0-3 ns. 
If the resolving time of the coincidence circuits used for nuclear physics is 

smaller than the time intervals corresponding to the distances between 
successive phase iegions then no rf phase structure will be observed. Therefore 
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Fig. 3. The particle energy at extraction as a function of  initial rf phase for different turn 
numbers. (a) The smoothed beam intensity per time interval as a function o f  time. 
(b) Arbitrary units are used. The full lines give the intensities which follow from the two 
different energies in Fig. 3(a). The broken lines represent a case in which 6 E  is diminished 
by a factor of  4 

in that case we can smooth away the discrete structure. We find an intensity per 
unit time interval as shown in Fig. 3(b). In this figure an enhanced intensity is 
found at @ 0. If we cut the E, @-parabola at a slightly different energy this 
intensity distribution becomes flat. The difference in intensity between these 
two cases decreases as 6E increases. 

When operating the cyclotron in a multiturn mode contributions will be 
extracted from many parabolas. (In a usual multiturn mode 20 or more revolutions 
contribute to the external beam.) This fact results in a high total intensity and a 
broad rf phase or time interval. 
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In the single turn mode only a small rf phase interval is selected by means of 
slits. Then only particles belonging to one parabola will be extracted at the same 
time. In this case the single turn mode shows a very high energy resolution. In the 
multiturn mode no slits should be placed in the cyclotron centre as they may 
retain useful particles. 

The smoothed time structure in Fig. 3 will become flatter when 6E becomes 
larger or when the energy and rf phase are not absolutely coupled. Due to axial 
and radial oscillations' and due to space charge effects5-in case of high intensities 
-the E, @-curves are smeared out. Then instead of lines in Fig. 3 bands should be 
drafted. The width of these bands can approximately be characterised by an 
interval &Eos,. This effect, which is not always negligible, has the same influence 
on the time structure of the external beam as the energy width 6E of the analysing 
system. If 6EoSc > S E  the time structure of the beam is no longer defined by the 
analysing system. In this case the difference in intensity distribution between the 
two cases 1 and 2 in Fig. 3 will become small. A slight change in the adjustment 
of the cyclotron or the analysing system energy hardly affects the intensity and 
time structure. 

Several effects may cause an rf phase deviation. For radial oscillation 
amplitudes of 3 mm in a 30 MeV cyclotron with 400 revolutions a phase 
deviation of l0-2" may occur. This value depends quadratically on the oscillation 
amplitude and is strongest in the places in the magnetic field where second 
derivatives are large. Also due to an unbalance in the time of arrival at the two 
accelerating gaps (in a one dee cyclotron) for particles with radial oscillations a 
value of 6E,,, q 1 / 2 ) A E  may be acquired. 

In order to obtain this effect an elongated area in the radial phase space should 
be extracted and transported through the analysing.system. For the useful 
particles &Eosc is not negligible in this case. A multiturn mode of operation will 
result which gives us the advantages of great stability between successive external 
beam pulses, broad time interval (high duty cycle) and insensitivity to small 
changes in adjustments, combined with high energy definition and beam quality. 

In the multiturn mode many particles are accelerated which will not be used, 
having the wrong energy and the wrong position in radial phase space. This may 
lead to currents far above 100 pA in the cyclotron. A part of this current hits 
the septum and causes heat dissipation. At the moment this does not seem to be 
a limitation. 

If the analysing system defines both the energy and the geometry of the 
beam in such a way that it picks out of radial phase space only a small portion 
around the equilibrium orbit we get &E,,, -0 and a beam results with high 
energy definition, high beam quality but small rf phase width or time interval. 
This case corresponds to a single turn mode of operation. Further, it will 
accelerate exclusively useful particles if slits are placed in the cyclotron centre. 

4. THE IMAGE OF THE SLITS OF THE BEAM HANDLING SYSTEM 
IN THE RADIAL PHASE PLANE AT INJECTION 

The energy and radius of a particle on an equilibrium orbit after No turns are 
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Particles with radial oscillations will in general have different radial positions 
depending on their oscillation phase and amplitude. Their positions are given by 

where the number of revolutions is given by N = No + T, the radial oscillation 
amplitude and final phase are given by A and Of respectively; Ar is the increase in 
radius per turn due to acceleration. We shall represent Ofas follows: 

where Oi is the initial oscillation phase at the ion source and 8, is the phase added 
during the acceleration. B, is found from the following expression: 

v - l  
9, = 27l d E 

~ V C O S  [@,(E) + @I 
Here #,(E) is the phase of particles with minimum turn number. Using this last 
expression and assuming a slowly changing V and a mean value of @, very close to 
zero we get: 

1 r = r, + rAr --ro + A  sin [O,, + nk#2-n(~r-1)~@2 + n(vr-1)27 + Oil 
4 

where Oco is the value for OC when # = 0, k equals the total number of radial 
oscillations with frequency v - 1, N is the turn number, v, is the value of v at 
R = ro. Now the radial position is represented in T, @ and the initial radial phase 
plane co-ordinates A, Bi. (As v does not change much A remains practically 
constant .) 

Let us now assume that r is defined by slits in the extraction system or by 
limitations in the beam handling system. Then the above expression yields a 
number of surfaces in the (A, Oi, #)-space, each surface belonging to a discrete 
value of T: 

The projection of S, on the radial phase plane gives a continuous area, which 
may have boundaries. Each point in the radial phase plane shows a discrete rf 
phase structure which follows from the turn number T. At extraction the whole 
radial phase plane is contracted into the p,-axis, since we defined the radial 
position: the surfaces S, transformed to the extraction region coincide with the 
(g, p,) plane. Then if no limitations at other places are used the extracted beam 
will not show any discontinuity in rf phase or geometrical extensions. 

If beside radius energy is also defined by means of an analysing system we get 
the lines L,: 

each line having its @, value according to the construction shown in Fig. 3. In 
Fig. 4 the lines are shown in the (A ,  Oi, $)-space. We will now get an external 
beam with a discontinuous rf phase structure but a continuous geometrical 
structure. 

The extensions A# of the discontinuous regions on the @-axis follow from 
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Fig. 4. The lines L, for 7 = 0, l . . . 5 in the (Xi, Yi, @)-space. The areas ( I )  and (2) represent 
'point sources' of equilibrium particles and particles off the equilibrium axis respectively. 
The positions of these areas are the positions in the (Xf, Yf, @)-space at extraction. 
Transforming these areas into the initial (Xi. Yi, @)-space means rotation around the origin. 
The area (2') is the projection in the initial radial phase space o f  the volume Vi given in the 
text. In fact ( I )  and (2) are the projections o f  volumes Vf. Extensions of the volumes Vi 
are indicated along the &axis 

Fig. 3 and are due to effects mentioned in Section 3, which smear out the 
discreteness. If the ion source delivers a homogeneous particle distribution 
throughout the whole (A, 4, @)-space and if we are looking at nearequilibrium 
particles these extensions are a good measure of the intensity in them as those 
particles start from a'point' source in the (A, Oi, @)-space (see Fig. 4). 

If now we look at particles which lie off the equilibrium axis and which belong 
to an area in radial phase space at extraction which has the same size as the above 
mentioned point source, we will find that these particles occupy the same volume 
in the (A, €4, @)-space as the particles around the equilibrium orbit. Or, stated 
differently: if one wants a high beam quality with high energy resolution it does 
not matter from which part of the initial radial phase space it comes, assuming 
that the ion source gives a homogeneous particle distribution. To prove this we 
must show that a volume in the (A, O f ,  @)-space is conserved after transformation 
to the (A, Oi, @)-space. Particles which lie off the equilibrium axis can be 
represented by a volume Vf: 
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Here A X 68f X 6A is the radial phase space area representing a 'point source' 
and 69  a small interval in the @-axis (see Fig. 4). This 'point source' rotates around 
the point corresponding to the equilibrium orbit after transformation into the 
(A,  Bi, @)-space. The angle of rotation depends on the value of &-given at the 
beginning of this section-and thus also on the rf phase @. After this 
transformation the radial area becomes A [27rk@ - 2.rr(vr - 1)N@] 6 4  . 6A. The 
volume is now found by multiplying this area with the thickness of the 
transformed volume in the @-direction, given by 68f/[27rk@ - 27r(vr - l)N@], 
which yields: 

Therefore 5 = Q. We have to remark, however, that the radial phase space area 
after transformation may be much larger than the area before transformation. 

In Section 2 it was shown that the injected beam sometimes may be 
represented by a surface Si(A, Bi, @) = 0. (It must be remarked that there may 
exist more surfaces Si if one slit is used. This is caused by the same effect which 
results in the surfaces ST. The different surfaces lie generally far away from each 
other due to the large radial increase per turn at the cyclotron centre. We have 
neglected these extra surfaces.) This condition together with LT = 0 yields a beam 
discontinuous both in rf phase and geometrical dimensions and may favour 
sometimes a special rf phase G,, when L, lies in or nearly in Si. In this last-very 
special-case we can conclude that when a slit is placed in the cyclotron centre 
the external beam may deliver mainly particles of one phase @, but having a 
continuous region of p, values, when the energy and radius are defined. This 
then has the same behaviour as single turn acceleration. For multiturn extraction 
these effects are a second reason for not using any slit in the cyclotron centre 
(see Section 3). 

Two slits in the cyclotron centre yield a line Li = 0. If energy and radius are 
again determined, then for getting particles through the whole system this line 
has to intersect one of the lines L,. In fact this means that the images of all slits 
in the cyclotron and the beam handling system have a common region. Small 
misalignments however have a large influence on the beam intensity. If we take 
6 E  =.1/10 A E  in a cyclotron with 400 turns the dee voltage must be stabilised 
much better than 1 :4000 or large intensity fluctuations will result. Further large 
fluctuations can be caused by a change in the magnetic field or rf frequency of 
2: 10' (giving a phase shift of 1.5", see also Fig. 3) or by a change in radial position 
of the beam of 0.1 mm at extraction which gives a mismatching of the cyclotron 
ernittance and the energy analysing system acceptance (e.g. maladjusted first 
harmonic components ~1 0-' B. can do this). 

5. SOME INFLUENCES OF CENTRAL REGION SLITS ON THE 
PARTICLE ORBITS 

In the preceding sections the selecting influence of slits on the radial particle 
orbits has been shown. We will mention shortly a few other properties of slits. 
When collimating the beam axially at one of the first turns,4, a phase selection 
may occur. Then the pulse width of the extracted beam is cut down to 3' (e.g. 
'L0.5 ns). Experimental evidence for this was found some years ago on the 
Philips prototype machine. \ 

When axial focusing is very small in the cyclotron centre the beam height 
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increases such that the dee aperture may act as a phase selecting slit. A decrease 
in axial focusing can be acquired by tuning the innermost circular correction 
coils. This has been the explanation of the very narrow beam pulses found in the 
V.U. cyclotron at ~msterdam.'' 

Slits placed near the accelerating gap can have a special influence on the 
particle orbits. A radial defining slit may change the electric field shape, from 
being homogeneous along the dee gap into one homogeneous in the axial 
direction. This means that instead of electrical axial focusing an extra radially 
focusing term appears. The result will be a decrease in the influence of the electric 
fields on the axial motion, especially with regard to the rf phase of the particles. 
The axial focusing may be entirely due to magnetic forces in this case. 

Sometimes grids are used in the cyclotron centre to define the electric field in 
a desired region. However, we must keep in mind the lens effect of the grid wires. 
Grids in thicentral region of the cyclotron may cause deterioration of the beam 
quality that exists even at the start of acceleration 

6. SOME REMARKS ON AXIAL FOCUSING IN THE 
CYCLOTRON CENTRE 

For a description of the axial motion in the centre of an A.V.F. cyclotron we 
shall use our general orbit theory." Coupling between the radial and axial 
oscillations will be neglected. Also for the moment we will not take into account 
space charge effects. 

The Hamiltonian for the axial motion is given by: 

p2 +Pz  + eV(s, z )  cos (Q + wt )  
2m 2m 

Here S is the co-ordinate along the central orbit, which is assumed to be a circle of 
radius r in the cyclotron centre, z is the axial co-ordinate, p, and p,  are the 
corresponding kinetic momenta, V is the electric potential in the accelerating gap-, 
o is the angular frequency of the rf system, @ is an arbitrary phase. 

The magnetic field in the cyclotron centre is assumed to be constant. The 
potential V is represented by 

We now introduce a new Hamiltonian K = -P,, where P, is the canonical 
momentum given by P, = p, + eA,: 

P; eV 1 e ~ "  
K = -m 1 - - - - cos (Q + a t )  +-z2 - cos (Q + wt)  [ 2mH H 2 H l "  
It is convenient to use relative momentum co-ordinates .rrz = Further 
we introduce = eV/H. The quantity is of order * N ,  where N is the number 
of revolutions. The change in particle energy H is assumed to be adiabatic, so 
that we solve our problem correspondingly. K becomes 

1 
- n,Z - Q cos (Q + wt) +-z2 a'' cos (Q + wt) " 2 l 
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We now introduce a new time co-ordinate to given by: 

where v is the adiabatically changing particle velocity. In this way to then 
represents a starting time and is a constant (instead of s/v a better approximation 
would be Jdslv). The transformation t -t to is canonical. Substituting the new 
time co-ordinate and expanding the square root we get: 

1 1 S 3 
K =- 2 nz 2 [I t ~ ~ c o s  C COS--sin r m. s ing  t- 8 o2 C O S ~ @ J ~  cos2; l 

1 1 S S 1 S 
t - r2 [--? @"(cos 0, cos- -sin &, sin? --@@"(cos &, cos--sin @o sin -)2 

2 r 4 r r I 
where @o = @ + a t o ,  @o is the phase of the particles in the middle of the 
accelerating gap. If higher harmonic acceleration is studied s/r must be replaced 
by hs/r with h the harmonic number. The potential function @ is expanded in a 
Fourier series: 

ns 
@=Z@,sin- 

r 

where s = 0 lies in the middle of the accelerating gap. By assuming a pulse shaped 
electric field occurring twice each revolution we find 

2@ 
@,, = - with @ = vD/E, 

nn 

where VD is the dee voltage. 
The Hamiltonian K contains several rapidly oscillating terms. A general rule 

states that these terms can be removed to higher orders by a suitable canonical 
transformation: e.g. a first order osdating term will result in a combination of a 
second order constant term a d  a second order oscillating term. In our 
approximation we shall keep only terms up to second order. Therefore in K, 
oscillating terms of first order and constant terms up to second order must be 
kept. First order quantities are @ and sin Go. 

The Hamiltonian K is abbreviated to 

where f = 1 + first and second order terms,g contains only first and second order 
terms. 

To get rid of the extra terms inf, a transformation function G(%, F) is used, 
given by l l 

The new Hamiltonian then becomes 

The relations between old and new co-ordinates and momenta are 

Proceedings of the Fifth International Cyclotron Conference

CYC69D02



Substitution of the real coefficients in K gives: 

(In a cylindrically symmetric electric field we get only (3116) @ l 2  as coefficient 
for the second term.) Though there are still time dependent coefficients in this 
Hamiltonian it has a clear meaning. This can be seen if the function @" is drawn. 
It represents two first order lenses of equal strength but opposite sign, separated 
from each other by a distance of the order of the accelerating gap. The term 
(7116) @ l 2  and the constant part in the third term between the brackets give a 
second order lens in the middle of the accelerating gap. 

Only the second term between the brackets thus gives an oscillating part of 
first order, which can be removed by a transformation function c(&, F )  given 
in ref. 11: 

This yields the final Hamiltonian 

where < > means the average value.. The magnetic focusing is of second order- 
i.e. same order as the electric focusing. It is therefore sufficient to add in this 
last Hamiltonian the magnetic focusing term: 

with n/r2 = - &g Now magnetic focusing and electric focusing can be compared 
to each other. Especially the gain or loss acquired with an off-resonant magnetic 
field can easily be studied. Such an off-resonant field may be a magnetic bump 
or cone in the centre. The axial oscillating frequency is given by 

Let us now assume that the central field B is given by 

where B, is the resonant field. If we substitute the turn number N we get: 
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For this field a change in v; is found equal to 

Now the turn number can be found at which the increase in magnetic focusing 
becomes more important than the decrease in electric phase focusing. One finds 
in this case N 2 3 for not too sharply changing field bumps for which 
/3 x 1/20 ABIB. It  must, however, be realised that the total focusing in the first 
revolutions is decreased. The above treatment is not suited for synchrocyclotrons 
as there sin 6, generally has large values compared to those in A.V.F. cyclotrons. 
An article on the synchrocyclotron centre has been given by Holrn.16 

The effect of phase focusing disappears if too many radial limitations in the 
electric fields are present during the first revolutions. The theory can be 
extended to multidee systems by substituting the corresponding Fourier 
expansions in the equations. 

7. THE AXIAL ENVELOPE OF THE BEAM 

Due to the periodicity of axial focusing the axial beam envelope also will show a 
periodical structure. If the beam occupies the area of an eigen ellipse in phase 
space we find the envelope by means of the co-ordinate transformation relations 
following from the last two canonical transformations in Section 6 .  Keeping 
terms up to first order one finds 

where z, is the envelope belonging to the eigen ellipse in the phase space after 
the last transformation and z is the envelope of the beam in real co-ordinates. 
If we substitute numerical quantities in this expression we find the envelope 
oscillating around a mean value (z,) with amplitudes normally smaller than 10%, 
except for the first turn. 

The envelope may be much more affected by space charge. The influence of 
space charge on the axial motion has been discussed by several a ~ t h o r s ? ~ - ' ~  
~ c ~ e n z i e ' ~  and ~awson'~~'~descr ibe the motion of a particle on the outer edge 
of a wedge-shaped continuous current sheet, whereas Reisers derives formulas 
taking into account the finite size of the bunched beam and the influence of 
neighbouring orbits. 

The axial oscillation frequency is given by 

where E, is the electric field strength acting on a particle moving at a height 
z = z, in the outer beam edge. The value of E, depends on the selected model. 
Reiser gives: 
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where I is the beam current, J/ the azimuthal extent of the wedge, e0 the 
dielectric constant in vacuum, v the particle velocity, G, a constant depending on 
the beam dimensions. 

When v:, is slightly changing we can consider the change in v: to be adiabatic. 
Then the height of the beam envelope I ,  is: 

where zo is the beam envelope without space charge. 
If the finite bunch length is ignored, the quality of the beam is not changed 

Fig. 5. The motion of  axial phase space figures with and without space charge 
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by space charge effects when the current distribution is homogeneous, since then 
the particle motion is linear. 

In practice the source will emit a beam with an approximately Gaussian 
distribution. Then non-linearities occur, as is illustrated in Fig. 5, where numerical 
results are shown." A 200 mm mrad, 100 keV proton beam, initially 4 mm wide 
in both r and z directions, is circulating in a 15 kG magnetic field. Axial electric 
focusing occurs twice per revolution. The dee gaps are approximated by thin 
lenses. The corresponding vertical focusing frequency has been chosen as 0.5. 
The upper row of figures shows the vertical motion at zero current. In the other 
figures a peak current of 10 mA is taken. The second row has a flat charge 
distribution, in which case the motion remains linear. We observe a relative 
change in v, of about 7%, which agrees well with the value of 9% calculated 
from Reiser's work. In the last two rows the charge distribution is Gaussian: 

where rm and zm are the semi axes of the ellipse representing the beam. 

8. CONCLUSION 

At present much loss of beam intensity occurs at the cyclotron centre. A careful 
study of axial focusing and space charge influence must be made for each 
cyclotron. The effect of a field bump in the central region will approximately 
disappear if axial electric focusing is not disturbed by grids or diaphragms. Space 
charge effects do not necessarily lead to an appreciable decrease in beam quality. 
Its influence can be calculated in detail. 

A speculation about the images in the initial radial phase space of various slits 
used in the cyclotron centre and in the high energy resolution analysing system 
indicates a way of improving the beam properties behind the analysing system 
with regard to intensity and duty-cycle. In this respect the present survey may 
also be used as a scheme for numerical calculations. 
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