
First and second harmonic 
extraction 
J. M. van Nieuwland 
Philips Research Laboratories, Eindhoven, Netherlands 

ABSTRACT 

The orbit separation desired for good beam extraction can be obtained in 
different ways. The separation is mainly determined by the harmonic field 
disturbances. A simple analytic representation of the motion of the orbit centre 
under the influence of first k d  second harmonic field components is presented. 
This description gives a clear and accurate insight into the extraction process. It 
is also used for numerical calculations with slowly varying field parameters at 
acceleration. 

A large gradient of the second harmonic field component can drive the orbit 
centre in a fvred direction, determined by the first and second field harmonics. 
This effect resembles the operation of regenerative extraction. The method with 
two independently adjustable harmonics has the advantage of permitting flexible 
control of the increase of the coherent oscillation amplitude and its radial and 
azimuthal directions. 

The numerical calculations are made for the field parameters of a Compact 
Isochronous Cyclotron. 

1. INTRODUCTION 

For good beam extraction in cyclotrons a relatively large orbit separation is 
advantageous. The orbit separation can be brought about in different ways, 
determined by harmonic magnetic and electric field disturbances and by the 
energy increase per turn. 

The precessionall and regenerative2 systems are well known. In the first the 
separation is obtained by the use of a very small first harmonic component. The 
second uses the radially decreasing peeler field and increasing regenerator field. 
These fields can be resolved into a number of harmonic field components, of 
which the second harmonic mainly drives the particle orbit centre in a desired 
direction. The first harmonic component normally has a minor influence, and 
moreover it has an absolute coupling with the second harmonic. 

In this paper we will discuss the influence of first and second harmonic 
magnetic field components on the radial motion of the orbit centre, based upon 
a rather simple analytical description (Section 2). We will investigate the usefulness 
of separately adjustable harmonic components for flexible control of the radial 
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and azimuthal motions of the orbit centre, which is an important feature in 
optimising an extraction systcm. 

Some numerical calculations using the analytical formulae taking into account 
the change of the magnetic field parameters due to acceleration, will be given in 
Section 3. It should be emphasised that the analytical formulation presented 
here is a first order approximation, which is quite suitable before the point v, = 1. 
Far out in the fringing field however, it gives only qualitative information. 

We will not go into the details of the nonlinear effects and the induced 
vertical particle motion due to too large an oscillation amplitude, but to 
determine the maximum permissible amplitude these effects should certainly be 
taken into account.' Another phenomenon, the influence of the oscillation 
amplitude on energy compression and retardation, is discussed elsewhere.3y4 

2. ANALYTICAL CALCULATIONS 

Hagedoorn and ~ e r s t e r '  pointed out that a time-independent Hamiltonian 
function H(q, I) for the action (I) and angle (cp) variables can be found, 
representing in a first approximation the motion of the actual orbit centre 
(Eqn 8.8, ref. 1). With this Hamiltonian the region of stable motion can be 
determined for a magnetic field configuration without disturbances. 

An extension of this Hamiltonian for a magnetic field with perturbations in 
the average field and first and second harmonic components leads to (Eqn 11.2, 
ref. 1): 

H (p, I) = M (Al cos cp + B, sin cp) (20% 

+ [(vr- I ) + K A ' , + ( M A ~ + % A ; ) c o s ~ ~  I, (1) 

Alp B1 and A2 are the amplitudes of the relative harmonic field components; A; 
and A; represent the radial gradients of the average field disturbance and the 
second harmonic component given by 

vr is the relative radial oscillation frequency. 
The angle cp is the angular co-ordinate of the orbit centre in the cyclotron, 

with its zero value along the direction of the second harmonic component. The 
angle is positive in the direction of rotation of the particle. 

The radial co-ordinate p of the orbit centre is given by 

H 

p = ro (:) ro (21)' for vr a I 

where ro is the radius of the particle orbit. 
The equations of motion of the orbit centre can be found from Eqn (1) by 

dZ aH 
- = -=M(2I)" ( -~~s incp+~~coscp)  -I(A,+ MA;) sin 2q 
do acp 

Proceedings of the Fifth International Cyclotron Conference

CYC69C06



dtp aH - = - - = - % (21)- (Al COS (P + sin (P) - (v, - 1) - A; 
do az 

- (% A2 + ?4 A;) COS 2tp (3'3) 

where 0 is the time co-ordinate, expressed in the azimuthal position of the 
particle. 

The Hamiltonian is a constant of motion and it defines the lines along which 
the orbit centre moves as a function of time. 

When Al = Cl cos $ 
Bl = Cl sin $ 

v,- 1 + %AA=Co 
% A ~ + % A ; = C Z  

these lines are given by 

putting the value of the Hamiltonian H equal to C/2. 

2.1. First harmonic component only 

The orbit centre moves under the influence of a first harmonic field component 
along lines which are given by 

These lines form concentric circles with radius and centre co-ordinates: 

Cl 
y, = - ro - sin $ 

2 c0 
This means that the centre of the circle is located on the line through the 
cyclotron centre pointing in the direction of the maximum of the first harmonic 
component. For vr < 1 the centre is attracted by this maximum and for vr > 1 it 
is pushed away. 
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The equation of angular motion is given by 

This equation shows that the sense of rotation depends on the sign of vr - 1. 
The angular velocity with which the orbit centre moves along the circle of 
Eqn (6) is 

from which the arc length AS = raC,2.rr corresponding to one particle revolution 
can be found. For C = 0 this results in the well-known equation for the maximum 
displacement due to a first harmonic: 

At extraction the particle orbit passes the region where v, - 1 changes from 
positive to negative values. Here the orbit centre moves along a circle with 
gradually increasing radius and centre position. At vr = 1 the circle has an infinite 
radius. Beyond this point the circle has again a decreasing radius but its centre lies 
on the opposite side of the cyclotron centre and the sense of rotation is reversed. 

Quantitative information of this motion as a function of time can only be 
obtained by solving the equations of motion (3) with the gradually changing 
coefficients (as a function of 8 or r,J given by the magnetic field configuration. 
(See Section 3.) 

2.2. Second harmonic component only 

A similar treatment can be given for the motion of the orbit centre under the 
influence of a second harmonic perturbation only. In this case the orbit centre 
follows the lines given by 

C (:J = CO + c2 cos 2p 

When I CO I > I C2 1 (or I Ur - 1 I > I MA2 + % A; 1 ) these curves form concentric 
ellipses, whose centres coincide with the cyclotron centre. 

The direction of motion of the orbit centre along the ellipse as a function of 
time is opposite in the two cases v, > 1 and vr < 1. 

When the particle orbit approaches the region where v, = 1 it must have 
passed the point where I CO I = I C2 I. In this case we get an unstable situation, 
since for I CO 1 I C2 1 Eqn (8) yields hyperbolas. The angle cp, of the asymptotes 
is given by 

c2 + c0 
p = a r t  - (+ 180~1 

c2 - c0 
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The sign of v, - 1 has no influence on the orientation of the motion of the orbit 
centre along the curves as a function of time. 

At the asymptotes (where the equation of angular motion shows G =  0 since 
cos 2 cp, = - Co/C2) the relative amplitude grows or diminishes according to 
Eqn (3) as 

The instability occurring at two of the four angles cp, can be used for a controlled 
orbit separation in the extraction region. The orbit centre is pushed in a constant 
direction while its distance from the cyclotron centre increases exponentially, 
showing the normal regenerative action. 

The point (plr,) = 0 is an unstable point. In a region around it the orbit 
centres can move in two directions. A fixed displacement made by a first 
harmonic will move the unstable point away and will drive the orbit centres into 
one desired direction. 

2.3. Combination of first and second harmonic components 

The curves determined by the constant of motion show a more complicated 
behaviour in this case. However instabilities again occur when I C2 I 2 I CO I . 
Considering the function p (p) for C = 0 (the only curve going through the 
cyclotron centre) we see that ellipses and hyperbolas again are obtained when 
we make a co-ordinate transformation from X = (p/ro) cos p, y = (p/ro) sin cp to 
x :y tby  

y r = y  - Cl 
sin J/ 

2 (C2 - CO) J 
The angles of the asymptotes of the hyperbolas in the new co-ordinate system 
are again given by Eqn (9). 

The semi-axes are given by 

a,, = - Cz cos 2 J/ - CO 

(C? - c21 (C2 + CO) 

b , , r = ~ [ I  c2 COS 2 J/ -co ?h 

2 (C2 - C$) (C2 - CO) 1 
which shows that in the case I C2 I < I CO I the ellipses are large for J/ 90". It is ' 
then possible that the orbit centre can make large steps per particle revolution 
along a nearly straight line. 
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Some examples of orbit centre paths are given in Fig. l(a) for the case 
I C2 I < I CO I and in Fig. l(b) when I C2 I > I CO I for different angles ) of the 
first harmonic. 

Fig. l .  Orbit centre paths under the influence o f  first and second harmonic field 
components. Q is the angle o f  the first harmonic. CO = 190 X 1 0-4, C l = 13 X 1 K4. 
(a) C z = 1 3 5  X 10-4,(b) C 2 = 5 4 0  X 10-4 

It is seen here that the ellipses and hyperbolas are placed such that the orbit 
centre leaves the cyclotron centre in a direction perpendicular to the first 
harmonic maximum, which is in accordance with the equation of angular 
motion (3). 

The rate of change of the oscillation amplitude as a function of time is 
given by 

P 
H Cl sin () - cp)  - - C2 sin 2 cp  

d e ro 

From this it follows that the optimum contribution from the first harmonic is 
obtained when ) = cp  + 90'. In order to maintain this optimum contribution 
during a part of the extraction process, it is desirable that cp  remains constant. , 

This is obtained in the case I C2 I > I CO I for an angle cp  = cpi given by 
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This means that when the strength of the second harmonic is given, the angle $ 
of the first harmonic should be set such that 

+ = H arc cos(- 2) * 90O 
In this case the orbit centre, starting in the cyclotron centre, is pushed in a 

constant direction and follows the asymptote of the hyperbola. The strength of 
the first harmonic gives a separate independent parameter to control the 
amplitude increase in the first instance. The strength of the second harmonic 
also has its influence at larger amplitudes. 

The total effect is maximised when C2 is chosen such that pi given by Eqn 
(14) is equal to - 45' In that case we get 

Although the phenomenon of growing amplitude is similar to that occurring in 
regenerative action with fixed field bumps, the Eqns (13) and (14) show the 
advantage of separate adjustable first and second harmonic field components. 
With such a system great flexibility is obtained both in direction and in rate of 
change of the amplitude. 

In the case where the coefficients in the Hamiltonian equation change 
adiabatically during acceleration, the motion of the orbit centre is much more 
complicated. In the region where vr changes rapidly (near v, = 1) an optimum 
setting of the angle of the first harmonic is difficult. 

In the next section some numerical results of orbit centre displacements for 
accelerated particles are discussed. 

3. Numerical calculations 

For the numerical calculations it is useful to present the equations of motion in 
X and Y co-ordinates: 

Y = ro J 21 sin p 

This is a canonical transformation where X is the canonical co-ordinate and Y 
the canonical momentum. The new Hamiltonian function becomes: 

The equations of motion are then given by 
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In order to introduce the acceleration we transform the particle time 9 into the 
average radius ro with 

dx d x d n  -= 2n - - 
dro dB dr, 

where n is the number of revolutions given by 

Then the equations of motion become: 

dx 
Cl (ro) sin 9 + 2y [co(ro) - 

These simultaneous differential equations can be numerically solved for given 
cl (TO), C2 (ro), vr (r0) and 9. 

Since a large amplitude of the coherent oscillation causes the particles to 
cross different values of v,, Alp A2 and A; during one revolution, the coefficients 
in the Eqns (20)-(21) are taken as averages along the particle path in the 
numerical calculations. At large oscillation amplitudes the effect associated with 
the crossing of Vr = 1 occurs at smaller average radius ro than would be expected. 

Some results of the calculations are shown in Figs 2 and 3 for the magnetic 
field parameters of our compact isochronous cy~lo t ron .~  In Fig. 2 the orbit 
displacement is given for a first harmonic field perturbation only. The value of 
Ur - 1 ranges in the region of the calculation from 110 X 1 0 - ~  to its maximum 
value of 400 X 10*. After its maximum it drops very rapidly to negative values. 
Three curves are given for different values of the first harmonic; in all cases 

= 0. The first harmonic is a gradient field disturbance with zero value at the 
starting point of the calculations, increasing to relative values of 0.75 X 1 0 - ~ ,  
1.5 X IO-~, 3 X 1 0 - ~  respectively for the curves l ,  2 and 3. 

The dots on the curves represent the number of revolutions. Fig. 3 shows the 
behaviour of the orbit centre under t h ~  influence of a first and a second 
harmonic component, for different angles $ of the first harmonic. Both 
harmonics are gradient fields, Al ranging between 0 and 6 X 10-3 and A2 between 
0 and 12 X Io-~. 
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Fig. 2. Motion of  the orbit centre for a first harmonic field component only. The 
dots represent the turn-number. Curve l :  Al from 0 to 0.75 X 10-3, curve 2: Alfrom 
0 to 1.5 X 10-3, curve 3: AI from 0 to 3 X 10-3 

- 4 -Y (cm) 

Fig. 3. Motion of  the orbit centre for the first and second harmonic components. $is the 
angle of  the first harmonic. Al from 0 to 6 X 10-3, Az from 0 to 12 X 10-3 
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The figures indicate the strong dependence on the angle of the first 
harmonic. According to Eqn (15) a nearly straight line should be obtained with 
this value of A2, for 35O. I t  is seen that in a small range of angles around this 
value the orbit centre initially follows a nearly straight line. Close to the point 
v, = 1 all curves turn around and a precessional motion with a very large 
amplitude is obtained. 

4 .  Concluding remarks 

The analytical description of the orbit centre displacement provides a quick and 
clear insight into the extraction process and the order of magnitude of the 
desired harmonic field components for many different cases. This is of great help 
before starting the more complicated orbit integration. The quantitative 
information is fairly accurate up to the point v, = 1. Some of the calculations 
have been checked by numerical orbit integration methods and show good 
agreement. 

It is clear that a separate setting of both harmonics has many advantages 
over a fixed coupling but in the case of regenerative extraction it is difficult to 
obtain the optimum situation, and there is no flexible tuning. 
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DISCUSSION 

Speaker addressed: J. M. van Nieuwland (Philips) 

Questions by H. Liesem (A.E.G.): (1) What is the bump strength in a practical 
case? (2) Did you calculate the corresponding axial motion? 
Answers: (1) In the examples given the harmonics are formed by gradient coils, 
giving for example, a second harmonic of 0 to 100 gauss. This is of course very 
large and is used to show the effect clearly. It yields an orbit separation of 
about 1 cm and this is not necessary in the machine. 
(2) Of course the axial motion should be calculated in order to determine the 
maximum permissible oscillation amplitude. This depends very strongly on the 
field parameters. 

Question by P. Wucherer (A.E.G.): Did you use only the trim coils for producing 
first and second harmonics? 
Answer: Yes, this gives the flexibility to  the system. 

Question by P. Wucherer (A.E.G.): Did you choose the four-sector concept 
in corpact  cyclotrons because first and second harmonics are easily produced 
by the rim coils. 
Answer: No, but it helps. 
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