Stopping of Energetic Radioactive Ions Using Cyclotron Principles

Felix Marti, Y. Batygin, Georg Bollen, Christopher Campbell, Shailendra Chouhan, Céline Guénaut, Don Lawton, David Joseph Morrissey, Jack Ottarson, Greg Keith Pang, Stefan Schwarz, Bradley Sherrill, Al Zeller

NSCL, East Lansing, Michigan 48824, U.S.A.
Questions to answer

(predicate) Why do we need to stop the ions?
(predicate) What is the present technology?
(predicate) What are the weak points of the present technology?
(predicate) What is the cycstopper?
(predicate) Where are we in the understanding of the device?
(predicate) Where do we go from here?
Radioactive ions are produced by projectile fragmentation.
Why do we need to stop the ions?

- **Atomic masses measurements**
 - Highest precision with ions at rest in Penning traps.
 - Masses of rare isotopes are important for nuclear structure studies (evolution of shell structure), nuclear astrophysics (element synthesis via the r process and the rp process), and test of fundamental interactions and symmetries.

- **Atomic (Laser) Spectroscopy**
 - Nuclear charge radii (nuclear deformation) and nuclear moments
 - Experiments with polarized beams (moments, fundamental tests)

- **Reacceleration**
 - Reactions of interest to nuclear astrophysics
 - Safe Coulomb excitation and transfer reactions (nuclear structure)
Low Energy Beam and Ion Trap Facility LEBIT

100 MeV/u 1 eV

G. Bollen-

D. Morrissey

Masses of >30 rare isotopes measured since 2005: Si, P, S, Ca, Fe, Co, Ga, Ge, Se, As, Br
What is the present technology?

- **Linear gas cell combines:**
 - A production method based on the in-flight fragment separator
 - Stops fragments in a helium gas cell and extracts them with guiding electric fields
 - Short extraction times (a few milliseconds) compared to ISOL, but lower emittance and more accurate energy beams than simple fragmentation
Limitations of the linear gas cells

- Intensity-dependent extraction efficiencies limit reach far from stability
 - Very large cells (>2m) impractical
 - RF walls/carpets can help - require cryogenic operation

- Extraction times of ≈ 100 ms do not match advantages of fast RIB production
 - Practically independent from gas cell size

D. Morrissey, NSCL

Cyclotrons 2007, F. Marti
Linear Gas Cell 200 mbar He, 1m long

Energy Degrader

Monochromatic Degrader

Range Tuner

~ opt MeV/u

Bρ = 2.45

Bρ ~ 2.0 in vacuum

Bρ < 0.1 into gas

200 mbar He, 1m

Inside cycstopper

D. Morrissey NSCL

Cyclotrons 2007, F. Marti
Heavy ions have good stopping characteristics

10,000 ions 150I slowed down in Si before entering a 1 m long helium linear cell at 200 mbar.

- 100% transmitted
- 0% reached the end of the chamber
- 100% stopped in the helium chamber
- 0% stopped in the Si degrader
Ligth ions have a long range

20000 ions 14O slowed down in Si before entering a 1 m long helium linear cell at 200 mbar.

- Light beams important for re-accelerated beam program (astrophysics)
- Large range straggling

81% transmitted

69% reached the end of the chamber

12% stopped in the helium chamber

19% stopped in the Si degrader

Cyclotrons 2007, F. Marti
Why use Helium as the stopping medium?

- Helium has a high ionization potential and helps to keep the ions singly charged.
- The purity of the helium is crucial to avoid the formation of heavy molecules that would be extracted with the ions of interest but in much larger numbers.
Origins of the cycstopper

- Originally proposed to decelerate antiprotons available from the LEAR ring at CERN \(^{(1)}\)
- Similar concept proposed to slow down radioactive ion beams introducing an “RF carpet” to transport the ions and extract them \(^{(2)}\)
- Concept extended to mitigate the space charge degradation of the extraction efficiency for intense heavy ion beams in linear gas cells \(^{(3)}\)

\(^{(3)}\) G. Bollen et al., NIM A 550 (2005) 27.
The helium interacts with the incoming ion, slowing it down. The energy is transferred to the helium ions, ionizing them. The axial electric field moves the ions toward the upper collecting plates, and the electrons toward the lower plates. The radioactive ions stop near the center where the RF carpet prevents them from striking the surface and guides them toward the axial hole.
Off-center orbits

The sudden changes in charge state force the orbit to change centers of curvature suddenly, becoming off-centered.

Special care should be taken to avoid the $\nu_r = 2\nu_z$ resonance given the large centering errors.

^{79}Br at 100 mbar
Magnetic field

![Graph showing magnetic field profiles](image)

Cyclotrons 2007, F. Marti
Conceptual design

The median plane is vertical. The half of the magnet with the injection and extraction systems remains stationary. The other half moves away to have access to the vacuum chamber.
A 5 T/m gradient magnet is placed in the return yoke to compensate the defocusing in the fringe field.

\[\varepsilon_x = 565 \pi \text{ mm mrad} \]

\[\varepsilon_z = 1131 \pi \text{ mm mrad} \]
Simulations

- Two codes have been developed in parallel with the possibility of using different formulations for the various effects.

- We include:
 - Magnetic and electric fields
 - Obtained from 3D TOSCA models
 - Energy loss in the vacuum window and internal degrader
 - Calculated using ATIMA \(^1\)
 - Energy loss in helium
 - Interpolated in tables from SRT (SRIM, Ziegler and Biersack) \(^2\)
 - Energy loss straggling
 - Empirical formulas \(^3\)
 - Charge exchange
 - Cross sections generated from several sources
 - Small angle scattering
 - Using either Sigmund small angle multiple scattering distributions \(^4\) or single scattering after Amsel \(^5\)

79\text{Br} \text{ in } 100 \text{ mbar He}

The motion of the ions is followed until the energy is \(\sim 100 \text{ eV} \). The range at this energy is about 0.1 mm.

At this point we switch the calculation to include the space charge effects and assume “terminal velocity” for the ions, based on the ion mobility:

\[v_d = KE \]

For energies below 1 MeV the range is just a few centimeters.
Energy loss is treated as a continuous effect. Calculated with SRT (SRIM).

The integration step is smaller than the mfp for charge exchange. The ion charge keeps decreasing while slowing down.
Magnetic focusing in the cycstopper

The magnetic field gradient helps to keep the beam focused in the axial direction. \(Z \) vs. path length (m)

\[^{79}\text{Br in 100 mbar Helium} \ (1\pi \text{ mm mrad in both directions}) \]
Higher pressures help to clear the degrader

The degrader thickness is determined to change the beam B_ρ from 2.6 to 1.6 Tm for all beams.

For lower pressures the slowed down beam partially hits the degrader a second time and is lost (red points). Higher pressures induce higher energy loss.

$^{79}\text{Br} \varepsilon_x = 565 \pi$ and $\varepsilon_z = 1131 \pi$ mm mrad

Cyclotrons 2007, F. Marti
Stopping as a function of pressure (79Br 6656 ions)

- 99% stopped at 200 mbar
- 96% stopped at 100 mbar
- 89% stopped at 50 mbar
^{14}O in the cycstopper (200 mbar)

- $\varepsilon_x =$ 570 π mm mrad
- $\varepsilon_z =$ 1700 π mm mrad
- 60% stopped in chamber
- 30% lost due to emittance and small angle scattering
- 5% hit degrader a second time
- 5% miss degrader

The distance from the stopped ions to the axial exit channel is small, decreasing the delay in extracting the short lived ions.
14O in the cyststopper, lost ions position at degrader

p_r vs. r

p_z vs. z

p_r vs. E
RF carpet

Fig. 12. Typical ion trajectories in the two layer rf-carpet as determined by microscopic particle simulation for 8Li ions in 90 Torr He gas. The rf voltage between neighboring electrode rings is 190 V at 26 MHz. The superimposed dc field at the surface of the nozzle carpet and the upper carpet are 8 and 10 V/cm, respectively.

Fig. 3. Superposition of RF-barrier field (E_{RF}) and DC field (E_{DC}) to form RF-carpet. Ions in high-pressure gas are pulled by E_{DC} while E_{RF} keeps ions away from the electrodes.

Cyclotrons 2007, F. Marti

Wada et al., NIMB 204 (2003) 570
Wada et al., NIMA 532 (2004) 40
RF carpet test stand and space charge

- Study of ion extraction with RF carpet systems
 - Simulations including space charge. Determine the limits on charge collection.
 - Dedicated test stand (funded by DOE)
Low energy beams at the NSCL

- Parallel efforts for developing gas stopping, charge breeding, and acceleration + new experimental facilities
- Opportunity for staged and independent testing
- Minimize interruption of ongoing stopped beam program

Energy range 300 keV/u – 3 MeV/u, upgradable to 12 MeV/u
80 MHz $\lambda/4$ resonators $\beta_{\text{opt}} = 0.041$ and $\beta_{\text{opt}} = 0.085$
Post-accelerator status

The EBIT is being designed

RFQ is being designed. The contract has been awarded to A. Schempp (Frankfurt). Delivery expected in 18 months.

We are testing the prototype of the low β srf quarter wave cavity. The high β cavity has been prototyped as well as the cryomodule design. Will begin soon the production of the two types of cavities.
Ion mobility in helium

The motion of the ions in the helium bath is characterized by the drift velocity equation:

\[v_d = KE \]

where \(v_d \) is the drift velocity, \(K \) the ion mobility and \(E \) the applied electric field. The mobility is related to the reduced mobility \(K_o \) (at standard pressure and temperature) by:

\[K = K_o \frac{1000}{273.16} \frac{T(\circ K)}{p(mbar)} \]

In helium \(K_o \sim 20 \text{ cm}^2/(\text{Vs}) \), and typical \(E = 10 \text{ V/cm} \)

Cyclotrons 2007, F. Marti
Effect of multiple scattering in a small emittance beam

- **Z vs. path length**
- **Linear gas cell,**
 - 1π mm mrad in both directions
- **50 mbar**
- **100 mbar**

No multiple scattering

With multiple scattering

'rclotrons 2007, F. Ma