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The requirements of next generation heavy ion facilities made the development of 2
3" Generation sources (and maybe 4% Generation) ECR ion sources necessary
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" VENUS has a dual mission: Major upgrade for the 88-Inch
Cyclotron and prototype for next generation heavy ion facilities
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: VENUS is the first and currently only high field
L SC ECR ion source optimized for and operated at 28 GHz

Design solutions developed in VENUS have been incorporated in the
design of other 3'd generation ECR ion sources

Superconducting magnets Beam transport with high
state of the art cryostat transmission dipole magnet

.

Aluminum plasma chamber for high power 28 GHz microwave technology
operation with incorporated x-ray shield

Ta X-ray shield
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The demonstrated source performance show that the next

eneration accelerator performance reguirements are possible
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! Beam line connection into the axial injection line

First Beam from VENUS extracted from the
Cyclotron September 2006, Ar®* at 200 MeV




Beam developments with heavy ion beams show the potential of
VENUS to boost the energy and intensity out of the 88-Inch Cyclotron
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First commissioning experiments for high charge state heavy ions
have been promising




state ion beams, but smaller or no gains at lower charge states

g Xenon beam developments show big gains for high charge
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[;Lmh Key parameters for an ECR ion source performance

_ Solenoids and Sextupole form
Plasma is resonantly heated a minimum-B field confinement structure
with microwaves
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. Optimization of the VENUS source for
Art?* to demonstrate the ‘tuning’ of the plasma parameters

Motivation: 1mA Ari2* for the SPIRAL Il Project
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Product of n_;increases with power

Analyzed Current [emA]
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The argon CSD shifts from
lower charge states to
higher charge state for
constant gas flow and
same confinement fields as
the power coupled to the
plasma increases.




&m Product of n_;increases with power

To keep the CSD peaked on
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:l] | Axial bremstrahlung measurements
Indicate an increase in plasma density with power
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The energy spectra of electrons does not change with power
Electron temperature remains constant



: Next Generation ECR lon Sources
Higher magnetic fields and higher frequencies
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Next Generation ECR lon Sources
Higher magnetic fields and higher frequencies

analyzed current [epA]
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ECR Design ‘Standard Model’
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Critical line and magnet load lines
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Martin Wilson, Superconducting Magnets,
Oxford University Press




Preliminary Analyses of a 56 GHz source
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Status of high field Nb;Sn Magnets

G. Sabbi et al., “Nb,Sn quadrupole magnets for the LHC
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" Other Challenges




A major challenge for high field SC ECR ion sources is
the heat load from bremsstrahlung absorbed in the cryostat

Technical Solution
VENUS Aluminum Plasma Chamber with 2mm Ta x-ray shield
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A major challenge for high field SC ECR ion sources is
the heat load from bremsstrahlung absorbed in the cryostat
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attenuates the low energy bremsstrahlung,
but becomes transparent for x-rays above
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.;! - Using scaled magnetic fields for 18 and 28 GHz (same ECR
’ zone size), 28 GHz heating results in x-ray flux and energies
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The scaling of the electron energy temperature with frequency has important
consequences for 4th generation superconducting ECR ion source with
frequencies of 37GHz, 56GHz.

Several (10s of ) watts of cooling power must be reserved for the cryostat.




Beam transport is a challenge for high field SC ECR ion sources

Norm. 1 rms-emittance pmmmrad]
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Beam transport is a challenge for high field SC ECR ion sources

Faraday Cup Current [uA]

800 -

Superconducting
Coil Structure

Double-Focusing
Analyzing Magnet

Harp
Ta viewing screen

T
\I& \I\\\ \I\\\ ‘.

________________

Iron Yoke  pjasma Volume

Movable
Extraction System

600[

By

3 i Diagnostics Box
T T T T E - m Analyzing Slits
yzing

’ Faraday Cup
40 50 [inch] Emittance Scanner

o

4]
o

D.S.Todd et al., LBNL RSI submitted

== 0
Sl
e
e
2 S ()
o
:;"p

3 4 &
Mass-to-Charge ratio




Simulation of oxygen beam extraction and transport
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Summary

« 3'd Generation sources fulfill their intensity promises
* The performances are still increasing with power, but mA of high charge state ions have
been demonstrated
For example with VENUS
— 2860 epA of Of*
— 860 epA of Arl2* 270 epA of Arté+ 1 euA of Arid+
— 200 epA of U 34+
However intensity needs and performance gains for next generation heavy ion
accelerator might justify 4th generation ECR ion sources (>28 GHz)
« New magnetic materials (Nb;Sn) will be needed to fabricate a 56 GHz ECR magnet
structure
— Further advances in technology will be necessary
— Prototyping will be essential

« X-ray heating will be a major challenges for 4" generation ECR ion sources

— Measurements of the axial bremsstrahlung on the VENUS ECR ion source show that the
electron temperature and x-ray flux increase with increasing frequencies

 Beam transport
— Emittance grows with magnetic field, but not as strong as expected
— Understanding of the beam formation at the ECR extraction will be key to optimize the beam
transport for high field ECR ion sources






Operational Experience with 28 GHz since 2004

e Superconducting Magnets

» Robust and reliable magnet system

» Magnets can be independently energized

* No conditioning after warm up required

» Magnetic fields can be explored over a wide range

» Conventional design has been optimized for operational reliability
and ease of maintenance

» Source has been designed as an UHV device all metal seals (including
28 GHz components)

— fast recovery after source maintenance
* Plasma chamber (Al+Ta), which allows for high power operation

» Performance is still increasing with power, the maximum total
power coupled into VENUS so far has been 9 kW (1kW/liter),
12 kW available

Us




To take full advantage of the high current available from VENUS
an upgrade of the cyclotron injection and center region is necessary

Beams from VENUS
 High intensity of the VENUS

beams have reached the
space charge limit of the m
current cyclotron injection &y Faraday Cup
beam line (~100epA)

e Transmission of the cyclotron
Injection line increases with
Injection voltage Cho
e Current beam line components do _
.. . Solenoid 2
not have sufficient focusing
strength for injection energies X 7
above 15 kV Return Yoke //
Solenoid 3

e Center region of the cyclotron will Inflector
require upgrade for high intenSity 88-Inch Cyclotron Center Region

operation 7 7

Solenoid 1




What about performance?

Double frequency heating (steep + gentle) and single frequency heating
(gentle gradient) can achieve similar performance at different power levels
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See also PA56, PA32



Similar performance if the count rate for low energy X-rays is similar

Double frequency heating (steep + gentle) and single frequency heating
(gentle gradient) can achieve similar performance at different power levels
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To achieve the similar performance in the two configurations the electron

density below 200keV needs to be similar

See also PA56, PA32




The gradient of the magnetic field at the resonance zone
strongly influences the heating efficiency and hot electron tail

Magnetic field configuration for optimized Axial Bremstrahlung spectra from VENUS

single and double frequency heating. for the two field configuration
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The bremsstrahlung spectrum with a shallow magnetic field gradient at the
resonance contains much higher x-ray energies.




The gradient of the magnetic field at the resonance zone
strongly influences the heating efficiency and hot electron tail

Consequently, the gradient of the magnetic field at the resonance zone
strongly affects the heat load into the cryostat

3-5_|'|'|'|'|-|-|-|-|-|-|-|-|-|-| 7 | I I I I T
3l [ | @ Bmin= 64T
! 6] ® Bmin=.45T
[ Single -
25 |
_ Frequency St
— 2] 2 al
E > |
0 [ =
15 f e +
- I I
1F B
N / \/ [/ BECR28GHZ 2_ +
: B 18 GHz i
O.SJ /AN ECR 1
i [ ®
ok .|.|.|.|.|.|[).O|u.lolle.lzlr.e(|ql:|eln.(:¥.l O-" |.| 1 Q| 1 I

Z [cm] Microwave Power [KW]




CYCLOTRONS 2007, Giardini Naxos, Messina, Italy

fipugs




&l -
:' .I/ﬁﬂll.!' J 5

1996
1997
Sep. 2001

June 2002
26/5/04

First R&D funds re
Prototype magnet constructed

World Most Powerful ECR Plasma
Confinement Structure!

4T Injection, 3T Extraction, 2.4 T
Sextupole,

First Plasma at 18 GHz
First 28 GHz Plasma

Superconducting ECR
lon source developments
are lengthy and costly
projects. Development
needs to start early




&m Product of n_;increases with power

« Dependence of Arl2+ and Arl4* on power e constant gas flow rates
e constant confinement field
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