DESIGN OF THE DATA ACQUISITION SYSTEM FOR THE NUCLEAR PHYSICS EXPERIMENTS AT VECC

DAQ & Dev Section, VECC
Large Detector Arrays at VECC

- **Charge Particle Detector Array (CPDA):** $4-\pi$ charge particle detectors. It consists of three parts
 - Forward array: $7^\circ-45^\circ$ with 24 Si-Si-CSI(Tl) telescope
 - Extreme forward array: $3^\circ-7^\circ$ with 32 Phoswich detectors
 - Backward array: $45^\circ-175^\circ$ with 330 CSI(Tl) detectors

- **Gamma spectroscopy**
 - Large Area Modular BaF$_2$ Detector Array (LAMBDA): Study high energy γ-rays with 162 BaF$_2$ detectors
 - Gamma multiplicity filter array (GAMMA): 50 BaF$_2$ detectors

- **Neutron detectors:**
 - Neutron Time-of-flight Measurement: 50 detectors
 - Neutron Multiplicity detector
DAQ Requirements

- The DAQ system should be able to handle more than 1200 channels.
- Data rate of 1MParameters/sec
- Commercial-off-the-shelf hardware modules
- Support for VME and CAMAC based system on both Linux and Windows machine
- Data storage in zero suppressed mode
- Generation of online 1D and 2D histogram generation & manipulation
CAMAC

- CAMAC: Computer Automated Measurement And Control
- Standardized by ESONE, IEEE/ANSI, IEC around 1972
CAMAC Specification

- 19” Crate, modular hardware form factor, 25 slots to attach modules.
- Crate contains power supply, backplane & FAN unit.
- Slot 25 is for CAMAC Crate controller module. The slot 1-24 may be occupied by CAMAC modules.
- The CAMAC backplane provides +6V, -6V, +24V & -24V, 0V (return) DC power; optionally +12V, -12V, +200V DC and 117V AC power may also be provided.
- The Hytec 5331 crate controller with PCI interface card & LP1341 List Processor are used.
CAMAC backplane signals

- **CAMAC Data & Address lines:**
 - 24bit READ & 24bit WRITE bus.
 - N – Slot number: each slot is directly addressed by controller with this signal
 - A – sub-address: Each CAMAC module can host 16 sub-unit
 - F – Function: Each sub-unit can perform 32 functions

- **Control signals**
 - S1, S2: Timing signal for dataway operations
 - Z: Initialize
CAMAC backplane signal

- **C**: Clear
- **B**: Busy
- **I**: Inhibit

Module responds with signals:

- **L**: Look At Me (LAM) signal. L line individually connects each slot to the controller, works as a interrupt to controller.
- **Q**: asserts the operation status
- **X**: asserts the command has been accepted
CAMAC Cycle

- The typical CAMAC cycle takes minimum 1 μsec.
- If a 24bit Data is read in each cycle, maximum theoretical throughput will be 3MB/sec

Hytec CAMAC Controller

- The total read/write time from DAQ software involves interrupt latency, software overhead and the CAMAC cycle time
- Hytec controller on Linux takes on an average 10 μsec
- With List processor the average time can be 2.14 μsec

PCaPAC 2012, VECC, Kolkata
CAMAC DAQ Software

- CAMAC DAQ on Linux and Windows
- t4: First PC based Win16 Win3.1 using WinSDK
- t32 for Win32 systems Windows 98/2000/NT/XP
- Offline version st32 and ast32, offline
VME

- VME: Versa Module Eurocard
- Maintained by VITA http://www.vita.com
VME64X system

- 19” crate with power supply unit & FAN unit
- Crate’s height and depth depend on form-factor. 3U, 6U and 9U crates (1U=1.75”) are available
- 6U VME64x crate has 21 slots and common backplane for all the signal and power lines
- p1 & p2 160pin and p0 is 95pin connector for each module
- +5V, +12V, -12V, +3.3V DC power are available in VME64X crate
- Hot-swappable, User IO
Salient feature of VME Bus

- Asynchronous BUS, Master/slave architecture
- Memory mapped IO
- Supports Multiprocessors, interrupt capability
- Slot 1 is for controller/arbitrator unit
- Data bus 32bit, Address bus 32 bit, Priority Interrupt bus, Arbitration bus, Utility bus
- Multiplexed bus operation makes it possible for 64bit data and 64bit address operation
- 100ns bus cycle. Supports 40MB/sec data rate for 32bit. Multiplexed mode supports 80MB/sec data rate.
The VME DAQ is developed in C++ and QT3 toolkit on both Linux and WindowsXP/2003.

- SIS3100, CAEN V2718
- Controllers are interface with PCI card and fibre optics cable
- Block transfer rate 5-7MB/sec for 32bit.
VME modules

- CAEN VME785, 792 & 775
 - 32 channel 12bit resolution
 - 5.7us ADC conversion time for all 32 channels
 - 32 event FIFO memory
 - External ECL bus for control and synchronization
 - BLT32, CBLT and MBLT capable

- MDI2, MADC32 from mesytec
Layered Architecture

Main window, displays

ASSOCIATOR & definitions

Read-out, event generator, process & H/W routine

Front end

ASSOCIATOR

Back end
VME DAQ Software

PCaPAC 2012, VECC, Kolkata
C-style Single configuration file for complete configuration, compatible to both offline and online

Define module, function, system, conditional construct

```c
module{
    module_type=vme785;
    base_address=0x800000;
    instance=0;
    channel=32;
    conversion_gain=4096;
    event_size=34;
    geographical_address=4;
}

function{
    func_type=oned;
    spec_len=4096;
    gain=1.0;
    offset=0.0;
    channel_no0{
        module_type=vme785;
        instance=0;
        channel=0;
    }
}

if(1 & 2)
{
    function{
        func_type=twod;
        x_len=512;
        y_len=512;
        channel_no0{
            module_type=vme785;
            instance=0;
            channel=16;
        }
        channel_no1{
            module_type=vme785;
            instance=0;
            channel=25;
        }
    }
}

system{
    transfer_mode=CBLT;
    no_of_crates = 2;
    event_trigger = 30;
}
```
Readout scheme

• GATE signal from Front-end electronics (FEE) is common to all

• Common Busy

• Horizontal readout in BLT or CBLT

• Block transfer and chained block transfer (32 bits)
Common dead time mode

\[\tau = \text{MAX}_{i=1\ to\ 3} \left(\tau_{1i} + \tau_{2i} + \tau_3 + \tau_4 \right) \]
Multi-threaded Dataflow
Event structure

Zero-suppressed Event format

Header

- 2 bits
- 30 bits

- Channel Count

Data

- 2 bits
- 14 bits
- 16 bits

- Channel No.
- ADC Value

EOB

- 2 bits
- 30 bits

- Don’t Care
Multi-crate DAQ

- CAEN V2718 Controller with PCI interface and fiber optics cable
- 8 crates can be daisy chained with a single interface card
- Automatic CBLT setup for individual crates
- Synchronization is done by the custom built synchronizer module.
- Common dead time mode of operation
- 1.2M parameter/sec throughput
Multicrate VME setup

Multi crate connection
Synchronization

- The RAW GATE is completely blocked, when the BUSY is high.
- GATE signal already present at the time of busy withdrawal is also blocked.
- The width of the RAW GATE signal is always preserved.

Timing diagram of synchronizer
Custom built Synchronizer module

- NIM standard module
- NIM/TTL/ECL busy input
- NIM/TTL Gate input
- NIM/TTL/ECL Gate Output
- Module blocks all the gates in busy period and always preserves the gate width
- The module can be used for multi-crate synchronization
Future plan

- FPGA based DAQ board
 - 100-125MSPS sampling ADC 12bit or more
 - Digital filter on FPGA for signal processing; replacing analog FEE modules
 - Automatic peak finding

- Heterogeneous DAQ system
 - Multiple independent DAQ (CAMAC, VME, Digital, Networked etc)
 - Absolute timestamping

- ASIC based FEE card with FPGA interface is also being explored for future upgradation
Conclusion

- CAMAC & VME based DAQ both on Linux and WindowsXP/2003 is available
- Multicrate VME version will support large number of detectors channels
- Timestamping module design and heterogeneous DAQ project has been taken up for current plan period
- Prototype development for Digital filter based DAQ board is under development
Thank you