Maintaining an effective and efficient control system for the Electromagnetic Calorimeter of the Compact Muon Solenoid experiment during long-term operations of CERN’s Large Hadron Collider

Oliver Holme Diogo Di Calafiori Günther Dissertori
Werner Lustermann Serguei Zelepoukine

For the CMS collaboration
Overview

1. CMS Electromagnetic Calorimeter (ECAL)
2. Detector control system (DCS) architecture
3. Challenges
4. Approaches
5. Conclusions
Barrel & Endcaps
Lead tungstate (PbWO₄) scintillating crystals
Photodiodes / phototriodes detect generated light

Preshower
Silicon strip sensors
Essential CMS ECAL DCS requirements

Monitoring

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Probes/Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>972 probes</td>
</tr>
<tr>
<td>Humidity</td>
<td>180 probes</td>
</tr>
<tr>
<td>Cooling system monitoring</td>
<td>3 independent systems</td>
</tr>
</tbody>
</table>

Control

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Channels/Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low voltage</td>
<td>1’060 channels Wiener & CAEN</td>
</tr>
<tr>
<td>Bias voltage</td>
<td>1’624 channels CAEN</td>
</tr>
</tbody>
</table>

Detector protection

- Software level protection actions
- Siemens PLC safety systems for interlocks
Current Architecture

15 DELL rack servers

- USB
- CAN

SYS-TEC electronic USB-CAN converters

WIENER power supplies

Embedded Local Monitor Boards (ELMB)

2 collaborative design from CERN, NIKHEF and PNPI

Other software applications

- Siemens PLCs
- CAEN power supplies

- Windows XP
- WinCC OA 3.8 SP2 (formerly PVSS)
- JCOP Framework
- Hardware drivers

1 collaborative project from CERN and LHC experiments
Challenges for the CMS ECAL DCS

High software maintenance
• Diverse component design
• Reduced staff numbers
• Consolidation required

Technological developments
• Release & support cycles
• Interdependencies
• Benefits of new technology

Extension of requirements
• Resulting from operational experience
• Need to avoid growing complexity
• Limit number of technologies
Software Consolidation

Software Analysis Project
- Factor out common functionality
- Homogenization
- Remove unneeded features

ECAL DCS Software
Analysis Outcomes
Improved Software
Continuous Quality Assessment

New Requirements
Before (January 2011)

- Lines of code: 67’532
- Duplicated code marked in **RED**

After (October 2011)

- Lines of code: 59’655
- Code reduced by more than 10%
Continuous Quality Control Impact

Without (October 2011)

- Lines of code: 59’655
- Duplication after analysis project

With (October 2012)

- Lines of code: 37’124
- Code reduced by another 35%
Handling new requirements

- **New requirements**
 - **Existing knowledge**
 - **Supported technologies**
 - **Expert Analysis**
 - **Optimal design**

Preshower bias voltage monitoring
- Based on existing ELMB design and experience

Improved humidity monitoring
- Custom electronics essential for existing probes
- Modbus chosen for readout due to WinCC OA support

Adopting new technologies

Smooth migration is essential
 – Restrictive upgrade schedule

CMS ECAL DCS replica lab setup
 – Research, development and validation
 – Fewer problems seen during deployment

Upcoming migrations (2013-2014)

<table>
<thead>
<tr>
<th>New DELL blade servers</th>
<th>✔ Validated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows 7</td>
<td>✔ Validated</td>
</tr>
<tr>
<td>CAN readout via Ethernet</td>
<td>In progress</td>
</tr>
<tr>
<td>WinCC OA 3.11</td>
<td>Pending</td>
</tr>
<tr>
<td>JCOP Framework 5.0</td>
<td>Pending</td>
</tr>
</tbody>
</table>
Conclusions

• Approaches have yielded benefits:

1. Consolidation and quality monitoring
 • Code size reduced by 45%
 • More consistency between components

2. Reusing existing technologies
 • Rapid development of DCS extensions
 • Complexity of system is controlled

3. New technology research and development
 • Smooth migration to new technologies
 • Benefit obtained from new features

Robustness maintained with extended functionality