Tomography for beams with intense space charge

Diktys Stratakis
Institute for Research In Electronics and Applied Physics,
University of Maryland, College Park, MD 20742

Research supported by the US Dept. of Energy
Motivation

The requirement: Many applications need well regulated beams with high intensity and low emittance

The challenge: Beams are born at low-energies where space charge forces are an issue

- Can cause emittance growth
- Halo formation possible
- Propagating waves
Approach

- To understand space charge we need an accurate phase space diagnostic.
- Tomography is a good candidate, but to date, has been used only for beams with little space charge.
- This study further develops and uses tomography for beams with intense space charge.
Outline

1. Example
2. History/Overview
3. Extension to Beams with Space Charge
4. Simulation/Validation of Tomography
5. Experimental Results
Motivation Example

- Multi-Beamlet Merger

Haber, Kehne, Reiser and Rudd, Physical Review A (1991)

- What happens in phase space?
Importance of Phase Space

- Initial distribution
- Downstream

Simulation

- Homogenization of a beam is different in configuration and phase space
Importance of Phase Space

- Initial distribution
- Downstream

- Homogenization of a beam is different in configuration and phase space
Importance of Phase Space

- Initial distribution
- Downstream

Simulation

Experiment

• Homogenization of a beam is different in configuration and phase space
Tomography (CAT Scan)

- Tomography is the technique of reconstructing an image from its projections.

http://www.sv.vt.edu/
http://universe-review.ca
Tomography Algorithm

Fourier Slice Theorem

Fourier transform of a parallel projection is equal to a slice of the two-dimensional Fourier transform of the original object.

Kak and Slaney, Principles of Computerized Tomographic Imaging (1988)
Tomographic Examples

- Multi-screen method
 - Sander et al. 1979
 - Minerbo et al. 1981
 - Honkavaara et. al. 2005
 - Holder et. al. 2006
- Multi-turn
 - Hancock et al. 1999
 - Connolly et al. 2000
- Multi-slit
 - Raparia et. al. 1997
 - Adachi et. al. 1998
 - Anderson et. al. 2002
 - Friedman et. al. 2004
- Cherenkov Radiation
 - Chen et al. 2003
- Quad-scan Method
 - Fraser et al. 1979
 - McKee et al. 1995
 - Sawamura et al. 1998
 - Geitz et al. 1999
 - Brunken et al. 2000
 - Yakimenko et. al. 2003
 - Montag et. al. 2004
 - Ohgaki et. al. 2004
 - Li, PhD Dis. et al. 2004
 - Zhou et al. 2006
Quad-Scan Tomography

Quadrupole Lens Screen

- Quadrupoles rotate the phase space distribution

- Single particle: \(x'' = -\kappa x + F_{sc} \)

- No SC: \(x'' = -\kappa x \)

\[
\begin{pmatrix}
 x \\
 x'
\end{pmatrix} =
\begin{pmatrix}
 \cos \sqrt{\kappa_x} z & \frac{1}{\sqrt{\kappa_x}} \sin \sqrt{\kappa_x} z \\
 -\sqrt{\kappa_x} \sin \sqrt{\kappa_x} z & \cos \sqrt{\kappa_x} z
\end{pmatrix}
\begin{pmatrix}
 x_0 \\
 x'_0
\end{pmatrix}
\]

\[
\begin{pmatrix}
 x \\
 x'
\end{pmatrix} =
\begin{pmatrix}
 \cos \theta & \sin \theta \\
 -\sin \theta & \cos \theta
\end{pmatrix}
\begin{pmatrix}
 x_0 \\
 x'_0
\end{pmatrix}
\]

- With SC: Very complicated! Need approximations

\[
\kappa = \frac{qB}{\gamma m a v}
\]
Beam Tomography with space charge

- Single particle equation:
 \[x'' = -\kappa x + F_{SC} \]

- Assume linear forces:
 \[x'' = -(\kappa_{x,0} - \frac{2K}{X(X+Y)})x \]

- Find X, Y by solving envelope equations:
 \[X'' + \kappa_x X - \frac{2K}{X+Y} - \frac{\epsilon_x^2}{Y^3} = 0 \]
 \[Y'' + \kappa_y Y - \frac{2K}{X+Y} - \frac{\epsilon_y^2}{Y^3} = 0 \]

- Get transport matrix

Geitz et al. PAC 1999
- UMERA is serving as a low-cost model of high intensity accelerators

\[K = \frac{qI}{2\pi \varepsilon_0 m(c\beta\gamma)^3} \]

\[\chi = \frac{1}{1 + \frac{\beta\gamma I_0}{2I} \left(\frac{\varepsilon_n}{a^2} \right)} \]

Kishek (TUZBAB03) – talk
Walter (TUPAS047), Bernal (THPAS030) - posters

<table>
<thead>
<tr>
<th>Energy</th>
<th>10 keV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current range</td>
<td>0.6-100 mA</td>
</tr>
<tr>
<td>rms Emittance, norm</td>
<td>0.2-3 (\mu)m</td>
</tr>
<tr>
<td>Zero-Current Tune</td>
<td>7.6</td>
</tr>
<tr>
<td>Depressed Tune</td>
<td>1.5 – 6.5</td>
</tr>
</tbody>
</table>
• Four magnets where employed for the tomographic recovery of the phase space
Tomography Simulation/ Validation

- Reconstructed phase space by Tomography is compared to that generated directly by WARP.

Non-uniform spatial distribution

Experiments with Intense Beams

- **Experiment 1:**
 Uniform beam evolution (19mA, $\chi=0.85$).

- **Experiment 2:**
 Nonuniform beam evolution (26mA, $\chi=0.91$).
Experiment 1: Single Beamlet Transport

XX’ Reconstruction

IC2 0.76m RC3 3.16m RC6 5.08m RC7 5.72m RC9 7.0m RC13 9.56m

10 mrad 10 mm

Haber (THPAS031) - poster
Experiment 1: Single Beamlet Transport

YY’ Reconstruction

- Space Charge Dominated Beam (19mA, $\chi=0.85$)
Experiment 2: Multibeamlet Transport

XX' Reconstruction

IC2

RC3

RC6

RC7

RC13

y

x

x'

10 mrad

10 mm

Simulation

E. Gun

IC2

Injection

RC3

RC13

RC6

RC7
Experiment 2: Multibeamlet Transport

Experiment

YY' Reconstruction

Simulation
Conclusions

- Extended Tomography to beams with space charge
- Simulation validated accuracy of technique
- Experimental measurements reveal evolution of beam halo and multi-beamlet merger

Acknowledgments

Not shown (but thanks, too):

outside group
- Dr. D. Grote
- Dr. A. Friedman
- Dr. V. Yakimenko
- Dr. H. Li

UMER group
- Dr. D. Sutter
- K. Tian
- B. Beaudoin
- M. Holloway
- C. Wu
Backup

25 mm

UMER
E-Gun
Filtered Backprojection Algorithm (FBA)

- A simple weighting in the frequency domain is used to take is projection and estimate a pie-shaped wedge of the object’s Fourier transform.
- We multiply the value of the Fourier transform of the projection and multiply it by the width of the wedge at that frequency
- Apply inverse Fourier Transform of the filtered projections
Quad Scan Tomography

<table>
<thead>
<tr>
<th>Article</th>
<th>Beam/Facility</th>
<th>Energy / Current</th>
<th>G. Perveance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brunken et al. 2000</td>
<td>S-DALINAC</td>
<td>8MeV/ 10^{-6} A</td>
<td>2.5 10^{-14}</td>
</tr>
<tr>
<td>McKee et al. 1995</td>
<td>Duke</td>
<td>44MeV / 0.2A</td>
<td>3.5 10^{-11}</td>
</tr>
<tr>
<td>Ohgaki et al. 2004</td>
<td>KU-FEL</td>
<td>10 MeV/ 0.1A</td>
<td>1.3 10^{-9}</td>
</tr>
<tr>
<td>Yakimenko et al. 2003</td>
<td>Brookhaven</td>
<td>50 MeV/ 100A</td>
<td>1.2 10^{-8}</td>
</tr>
<tr>
<td>Zhou et al. 2006</td>
<td>Brookhaven</td>
<td>60 MeV/ 266A</td>
<td>1.9 10^{-8}</td>
</tr>
<tr>
<td>Montag et al. 2004</td>
<td>RHIC</td>
<td>54 MeV/ 330A</td>
<td>3.2 10^{-8}</td>
</tr>
<tr>
<td>Sawamura et al. 1998</td>
<td>JAERI</td>
<td>16 MeV/ 100A</td>
<td>3.4 10^{-8}</td>
</tr>
<tr>
<td>Geitz et al. 1999</td>
<td>TeslaTF</td>
<td>16 MeV/ 200A</td>
<td>7.0 10^{-7}</td>
</tr>
<tr>
<td>Fraser et al. 1979</td>
<td>LAMPF</td>
<td>0.75-100MeV/ 18mA</td>
<td>10^{-5} -10^{-8}</td>
</tr>
<tr>
<td>Li H. PhD Dis. 2004</td>
<td>UMER</td>
<td>10 keV/ 0.007A</td>
<td>1.0 10^{-4}</td>
</tr>
</tbody>
</table>

For UMER: G. Perveance 10^{-6} to 10^{-3}
Beam Envelope from G000

Q1 = -1.67A
Q2 = -1.49A
Q3 = 3.5A