Results of the Energy Doubler Experiment at SLAC

Mark Hogan

22nd Particle Accelerator Conference 2007
June 27, 2007

Work supported by Department of Energy contracts DE-AC02-76SF00515 (SLAC), DE-FG03-92ER40745, DE-FG03-98DP00211, DE-FG03-92ER40727, DE-AC-0376SF0098, and National Science Foundation grants No. ECS-9632735, DMS-9722121 and PHY-0078715.
Why Plasma Accelerators?

- **Laser Wake Field Accelerator**
 A single short-pulse of photons

 \[V_{gr} \]

- **Plasma Wake Field Accelerator**
 A high energy electron bunch

 - Wake: phase velocity = driver velocity

Large wake for:

- Laser amplitude \(a_0 = eE_0/m(\omega_0)c \sim 1 \) or
- Beam density \(n_b \sim n_o \)

Accelerating Field:

\[30\text{GeV}/m(10^{17}/n_o)^{1/2} \]
Laser Driven Plasma Accelerators:
• Accelerating Gradients > 100 GeV/m (measured)
• Narrow Energy Spread Bunches
• Interaction Length limited to cm’s

Beam Driven Plasma Accelerators:
Large Gradients:
• Accelerating Gradients > 50 GeV/m (measured!)
• Focusing Gradients > MT/m
• Interaction Length not limited

Unique SLAC Facilities:
• FFTB
• High Beam Energy
• Short Bunch Length
• High Peak Current
• Power Density
• e⁻ & e⁺

Scientific Question:
• Can one make & sustain high gradients in plasmas for lengths that give significant energy gain?
Laser Driven Plasma Accelerators:
• Accelerating Gradients
 > 100 GeV/m (measured)
• Narrow Energy Spread Bunches
• Interaction Length limited to mm’s

Beam Driven Plasma Accelerators:
Large Gradients:
• Accelerating Gradients
 > 30 GeV/m (measured!)
• Focusing Gradients
 > MT/m
• Interaction Length not limited

Unique SLAC Facilities:
• FFTB
• High Beam Energy
• Short Bunch Length
• High Peak Current
• Power Density
• e- & e+

Scientific Question:
• Can one make & sustain high gradients in plasmas for lengths that give significant energy gain?
- Plasma wave/wake excited by a relativistic particle bunch
- Plasma e^- expelled by space charge forces \(\Rightarrow\) energy loss
 (ion channel formation \(r_c \approx (n_b/n_e)^{1/2}\))
- Plasma e^- rush back on axis \(\Rightarrow\) energy gain
 (>GeV/m)
- Linear scaling:
 \[E_{\text{acc}} \approx 110 \left(\frac{MeV}{m}\right) \frac{N/2 \times 10^{10}}{\left(\sigma_z / 0.6\text{mm}\right)^2} \approx \frac{1}{\sigma_z^2} \]
 @ \(k_{pe}\sigma_z \approx \sqrt{2}\)
- Plasma Wakefield Accelerator (PWFA) = Transformer
 Booster for high energy accelerator
• Plasma wave/wake excited by a relativistic particle bunch

• Plasma e⁻ expelled by space charge forces => energy loss

 (ion channel formation \(r_c \approx (n_b/n_e)^{1/2} \sigma_r \))

• Plasma e⁻ rush back on axis => energy gain

 (\(> \text{GeV/m} \))

• Linear scaling: \(E_{\text{acc}} \approx 110(\text{MeV/m}) \frac{N/2 \times 10^{10}}{(\sigma_z / 0.6\text{mm})^2} \approx 1/\sigma_z^2 \) (\(@ k_{pe} \sigma_z \approx \sqrt{2} \))

• Plasma Wakefield Accelerator (PWFA) = Transformer

 Booster for high energy accelerator

Beam Driven Plasma Wakefield Accelerator

M. J. Hogan PAC2007
June 27, 2007
Experiments Located in the FFTB

Plasma Wakefield Acceleration at SLAC

M. J. Hogan PAC2007
June 27, 2007
E-157/162 Beam-Plasma Experimental Results

Focusing e⁻

\[\sigma_0 \text{ Plasma Entrance} = 50 \, \mu m \]

\[\varepsilon_n = 12 \times 10^{-5} \, \text{m rad} \]

\[\beta_0 = 1.16 \, \text{m} \]

\[\Psi \propto n_e^{1/2} L \]

X-ray Generation

\[\theta \propto 1/\sin \phi \]

\[\theta \approx \phi \]

Wakefield Acceleration e⁻

\[\sigma_0 \text{ Plasma Entrance} = 50 \, \mu m \]

\[\varepsilon_n = 12 \times 10^{-5} \, \text{m rad} \]

\[\beta_0 = 1.16 \, \text{m} \]

\[\Psi \propto n_e^{1/2} L \]

Matching e⁻

\[L = 1.4 \, \text{m} \]

\[\sigma_0 = 14 \, \mu m \]

\[\varepsilon_n = 18 \times 10^{-5} \, \text{m rad} \]

\[\beta_0 = 6.1 \, \text{cm} \]

\[\alpha_0 = -0.6 \]

\[\Psi \propto n_e^{1/2} L \]

Electron Beam Refraction at the Gas–Plasma Boundary

\[\theta \propto 1/\sin \phi \]

\[\theta \approx \phi \]

Wakefield Acceleration e⁺

Add 12-meter chicane compressor in linac at 1/3-point (9 GeV)

Existing bends compress to <100 fsec

30 kAmps

28.5 GeV

80 fsec FWHM

1.5%
Short Bunch Generation in the SLAC Linac

Damping Ring

50 ps

RTL

1 GeV

9 ps

SLAC Linac

0.4 ps

20-50 GeV

FFTb

<100 fs

Add 12-meter chicane compressor in linac at 1/3-point (9 GeV)

30 kAmps

28.5 GeV

Existing bends compress to <100 fsec

1.5%

<100 fsec FWHM

3.2

2.0

1.4

80 fsec FWHM

FRPMS063 Ian Blumenfeld

M. J. Hogan PAC2007
Plasma Source Starts with Metal Vapor in a Heat-Pipe Oven

Peak Field For A Gaussian Bunch:

\[E = 6GV/m \frac{N}{2 \times 10^{10}} \frac{20\mu}{\sigma_r} \frac{100\mu}{\sigma_z} \]

Ionization Rate for Li:

\[W_{Li} [s^{-1}] \approx \frac{3.60 \times 10^{21}}{E^{2.18} [GV/m]} \exp\left(\frac{-85.5}{E [GV/m]}\right) \]

See D. Bruhwiler et al, Physics of Plasmas 2003

Space charge fields are high enough to field (tunnel) ionize - no laser!
- No timing or alignment issues
- Plasma recombination not an issue

- However, can’t just turn it off!
- Ablation of the head
E-167: Energy Doubling with a Plasma Wakefield Accelerator in the FFTB

- Linac running all out to deliver compressed 42GeV Electron Bunches to the plasma
- Record Energy Gain
- Highest Energy Electrons Ever Produced @ SLAC
- Significant Advance in Demonstrating Potential of Plasma Accelerators

Some electrons double their energy in 84cm!

Can you just make the plasma longer?

Plasma Length = 84cm

Plasma Length = 113cm
Energy Gain Limited by Head Erosion

Near term solution will likely involve either a low density pre-ionization or integrated permanent magnet focusing. Longer term – get a better emittance.
New Phenomena: Trapped Particles

Electrons Are Trapped at He Boundaries and Accelerated Out of the Plasma

Two Main Features
• 4 times more charge
• \(>10^4\) more light!

Two energy populations (MeV & GeV)

Note: Primary beam is also radiating!
Visible Light Spectrum Indicates Time Structure of Trapped Electrons

\[\tau \Delta \omega = 2\pi \]

Bunch Spacing \(c\tau \approx 70 \mu \), plasma wavelength, \(\lambda_p = 64 \mu \).

Trapped Particles Have Short Time Structure

OSIRIS Simulations:
- He electrons in several buckets
- Spaced at plasma wavelength
- Bunch length \(\sim \text{fs} \)
High Brightness Electron Source?
- Multi-GeV Energy
- fs pulse length
- Normalized Emittance 10 smaller than the drive beam

Designing next generation experiments to better understand and produce more of them!
Can Be Optimized by Varying Beam and Plasma Parameters

Study Trapped Particles with OSIRIS Simulations

- **Helium**
- **Lithium**

Ionization level

<table>
<thead>
<tr>
<th>Ionization Energy (eV)</th>
<th>He</th>
<th>Li</th>
<th>Ar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>24.587</td>
<td>5.392</td>
<td>15.759</td>
</tr>
<tr>
<td>2nd</td>
<td>54.416</td>
<td>75.638</td>
<td>27.629</td>
</tr>
<tr>
<td>3rd</td>
<td>122.451</td>
<td>40.74</td>
<td></td>
</tr>
</tbody>
</table>

Graphs:

- **2μm FWHM!**
- **Peak at 11 GeV**
- **FWHM ~4%**
Next generation experiments will focus on two major themes:

- **Two Bunch Experiments**
 - Accelerate an electron bunch with narrow energy spread and preserved emittance – not just particles

- **High Gradient Positron Acceleration**
 - Need both for a collider
 - Two bunch positron experiments will follow
- Plasma Wakefield Accelerator (PWFA) = Transformer
 Booster for high energy accelerator
Recall Why We Want Drive + Witness Bunch

Simulations by C. Huang, UCLA

\[N_D = 3 \times 10^{10}, \quad N_w = 10^{10}, \]

\[\varepsilon_{nx} = \varepsilon_{ny} = 2230 \times 10^{-6} \text{ m-rad}, \quad \sigma_x = \sigma_y = 15 \mu m, \quad (\text{beam matched to the plasma}) \]

\[\sigma_{zD} = 145 \mu m, \quad \sigma_{zW} = 10 \mu m, \quad \Delta z = 100 \mu m \]

\[N_e = 5.66 \times 10^{16} \text{ cm}^{-3}, \quad L_p = 30 \text{ m} \]

Doubling 500GeV in 30m! (simulation)
Creating Two Bunches: Use a Notch Collimator

Magnetic Bunch Compression (conceptual, $\gamma >> 1$)

$\delta \equiv \Delta E/E$

σ_{δ_i}

σ_{δ_i}

$V = V_0 \sin(kz)$

$\Delta z = R_{56} \delta + T_{566} \delta^2$

RF Accelerating Voltage

Path-Length Energy-Dependent Beamline

Courtesy P. Emma
Exploit Position-Time Correlation on e⁻ bunch to create separate drive and witness bunch

Access to *time* coordinate along bunch
Exploit Position-Time Correlation on e⁻ bunch to create separate drive and witness bunch

$x \propto \frac{\Delta E}{E} \propto t$

1. Insert tantalum blade as notch collimator

Access to time coordinate along bunch
Exploit Position-Time Correlation on e^- bunch to create separate drive and witness bunch

$x \propto \Delta E/E \propto t$

1. Insert tantalum blade as notch collimator
2. Do not compress fully to preserve two bunches separated in time
Change Incoming Chirp to Change Bunches

Bunch Separation = 146 µm; Nwitness/Ndrive = 0.12

Profile
Drive: 6.8 kA, 30 µm
Witness: 1.8 kA, 15 µm

Bunch Separation = 125 µm; Nwitness/Ndrive = 0.12

Profile
Drive: 9.5 kA, 21 µm
Witness: 1.9 kA, 14 µm

Bunch Separation = 109 µm; Nwitness/Ndrive = 0.11

Profile
Drive: 14 kA, 14 µm
Witness: 2.2 kA, 13 µm

Bunch Separation = 89 µm; Nwitness/Ndrive = 0.12

Profile
Drive: 20 kA, 9.4 µm
Witness: 2.3 kA, 12 µm
Test of Notch Collimator - December 2005

Ta Blade
100-300µm Wide
1.6cm Long (4 X₀)

Energy Spectrum Before Plasma:
- High Energy
- Low Energy

Energy Spectrum After Plasma:
- Energy Gain
- Energy Loss

Shot # (Time)

- Acceleration correlates with collimator location (Energy)
- No signature of temporally narrow witness bunch - yet!
- Collimated spectra more complicated than anticipated
- Will be a major component of long term program @ SABER
- The only technique that will work for positrons too!

June 27, 2007
• FFTB provided better access for test than the linac chicane (LBCC)
• 1D simulations not adequate
• 3D models using ELEGANT & SHOWER (EGS4) reproduce measured spectra from tests in 2005
• Simulations show can create two bunches in the chicane!
• Only technique that will work for both e- & e+
• Collimator optimization in progress
PWFA Mechanism Different For A Positron Beam

Blow-out electron Flow-in positron
Positron Focusing varies with radius

\[n_e = 0 \quad n_e \approx 10^{14} \text{ cm}^{-3} \]

- Ideal Plasma Lens in Blow-Out Regime
- Plasma Lens with Aberrations

E-162 Data
PWFA Mechanism Different For A Positron Beam

Positron Focusing varies with radius and position along the bunch

- Ideal Plasma Lens in Blow-Out Regime
- Plasma Lens with Aberrations

E-162 Data

(M.J. Hogan et al., PRL 2003)
Although the wakes are more complicated, have demonstrated positron acceleration with long bunches and low density (E-162).
Although the wakes are more complicated, have demonstrated positron acceleration with long bunches and low density (E-162)

A Compelling Question:
Can the large amplitude wakes measured for electrons be created and sustained for a positron drive beam?

Evolution of a positron beam/wakefield and final energy gain in a **self-ionized** plasma

Will require iteration with plasma source development to minimize emittance growth (hollow channel plasma?)

\[N_b = 8.79 \times 10^9, \sigma_r = 11\mu m, \sigma_z = 19.55\mu m, n_p = 1.8 \times 10^{17} \text{ cm}^{-3} \]
Future Experiments Require a New Facility: SABER

Beam Transport Hall (previously FFTB*)

Linac

* Final Focus Test Beam

Facing West

B. Hall
Conclusions:

- **Exciting Time for Plasma Wakefield Experiments**
- **Plasma Wakefield Accelerators** have demonstrated gradients >50 GeV/m and energy gain >40 GeV
Conclusions:

- Exciting Time for Plasma Wakefield Experiments
- Plasma Wakefield Accelerators have demonstrated gradients >50GeV/m and energy gain >40GeV
- Field-ionized plasma production allows for long, uniform, high-density plasmas
Conclusions:

• Exciting Time for Plasma Wakefield Experiments
• Plasma Wakefield Accelerators have demonstrated gradients >50GeV/m and energy gain >40GeV
• Field-Ionized plasma production allows for long, uniform, high-density plasmas
• Interesting new phenomena: trapped particles etc
Conclusions:

- Exciting Time for Plasma Wakefield Experiments
- Plasma Wakefield Accelerators have demonstrated gradients >50GeV/m and energy gain >40GeV
- Field-Ionized plasma production allows for long, uniform, high-density plasmas
- Interesting new phenomena: trapped particles etc
- Much more work to be done:
 - Instabilities, Ion motion etc under extreme beams
 - Accelerate a second bunch (not just particles) with narrow energy spread and good emittance
 - High-gradient positron acceleration mitigating emittance growth
Conclusions:

- Exciting Time for Plasma Wakefield Experiments
- Plasma Wakefield Accelerators have demonstrated gradients $>50\text{GeV/m}$ and energy gain $>40\text{GeV}$
- Field-Ionized plasma production allows for long, uniform, high-density plasmas
- Interesting new phenomena: trapped particles etc
- Much more work to be done:
 - Instabilities, Ion motion etc under extreme beams
 - Accelerate a second bunch (not just particles) with narrow energy spread and good emittance
 - High-gradient positron acceleration mitigating emittance growth
- Continued progress requires an accelerator research facility to replace the FFTB while providing additional capabilities → SABER