Outline

• Science Motivation
• Design Goals
• ELIC Conceptual Design
• R&D Requirements and Advances
• Summary
Science Motivation

A High Luminosity, High Energy Electron-Ion Collider:
A New Experimental Quest to Study the Glue which Binds Us All

How do we understand the visible matter in our universe in terms of
the fundamental quarks and gluons of QCD?

Explore the new QCD frontier: strong color fields in nuclei
- How do the gluons contribute to the structure of the nucleus?
- What are the properties of high density gluon matter?
- How do fast quarks or gluons interact as they traverse nuclear matter?

Precisely image the sea-quarks and gluons in the nucleon
- How do the gluons and sea-quarks contribute to the spin
  structure of the nucleon?
- What is the spatial distribution of the gluons and sea quarks in
  the nucleon?
- How do hadronic final-states form in QCD?
ELIC Design Goals

- **Energy**
  - Center-of-mass energy between 20 GeV and 90 GeV
  - Energy asymmetry of ~ 10,
    - 3 GeV electron on 30 GeV proton or 15 GeV/n ion up to
    - 9 GeV electron on 225 GeV proton or 100 GeV/n ion

- **Luminosity**
  - $10^{33}$ up to $10^{35}$ cm$^{-2}$ s$^{-1}$ per interaction point

- **Ion Species**
  - Polarized H, D, $^3$He, possibly Li
  - Up to heavy ion A = 208, all striped

- **Polarization**
  - Longitudinal polarization at the IP for both beams
  - Transverse polarization of ions
  - Spin-flip of both beams
  - All polarizations >70% desirable

- **Positron Beam**
  - Desirable
ELIC Conceptual Design

Green-field design of ion complex directly aimed at full exploitation of science program.

30-225 GeV protons
15-100 GeV/n ions

3-9 GeV electrons
3-9 GeV positrons

12 GeV CEBAF Upgrade
## ELIC (e/p) Design Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Ring-Ring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam energy</td>
<td>GeV</td>
<td>225/9</td>
</tr>
<tr>
<td>e/A ring circumference</td>
<td>km</td>
<td>1.5</td>
</tr>
<tr>
<td>Bunch collision frequency</td>
<td>GHz</td>
<td>1.5</td>
</tr>
<tr>
<td>Number of particles/bunch</td>
<td>$10^{10}$</td>
<td>0.42/.77</td>
</tr>
<tr>
<td>Beam current</td>
<td>A</td>
<td>1/1.85</td>
</tr>
<tr>
<td>Energy spread, rms</td>
<td>$10^{-4}$</td>
<td>3/3</td>
</tr>
<tr>
<td>Bunch length, rms</td>
<td>mm</td>
<td>5/5</td>
</tr>
<tr>
<td>Beta*</td>
<td>mm</td>
<td>5/5</td>
</tr>
<tr>
<td>Horizontal emittance, norm</td>
<td>μm</td>
<td>1.25/90</td>
</tr>
<tr>
<td>Vertical emittance, norm</td>
<td>μm</td>
<td>.05/3.6</td>
</tr>
<tr>
<td>Beam-beam tune shift (vertical) per IP</td>
<td>μm</td>
<td>.006/.086</td>
</tr>
<tr>
<td>Peak luminosity per IP, $10^{34}$ (including hourglass effect)</td>
<td>cm$^{-2}$ s$^{-1}$</td>
<td>5.7 6.0 5.0 .7</td>
</tr>
<tr>
<td>Number of IPs</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Core &amp; lumi. IBS lifetime</td>
<td>hrs</td>
<td>24</td>
</tr>
</tbody>
</table>
Evolution of ELIC Conceptual Design

- Energy-Recovery-Linac-Ring
- Linac-Circulator-Ring-Storage-Ring
- Ring-Ring

- Challenge: polarized high current electron beam
  - ERL-Ring: 2.5 A
  - Circulator ring: 20 mA
  - State-of-art: 0.1 mA

- 12 GeV CEBAF Upgrade polarized source/injector already meets beam requirement of ring-ring design

- ELIC ring-ring design still preserves high luminosity, high polarization
ELIC Ring-Ring Design Features

- Unprecedented high luminosity
  - Enabled by short ion bunches, low $\beta^*$, high rep. rate
  - Require crab crossing
- Electron cooling is an essential part of ELIC
- Four interaction regions (detectors) for high productivity
- “Figure-8” ion and lepton storage rings
  - Ensure spin preservation and ease of spin manipulation.
  - No spin sensitivity to energy for all species.
- Present CEBAF gun/injector meets storage-ring requirements
- The 12 GeV CEBAF can serve as a full energy injector to e-ring
  - Simultaneous operation of collider and CEBAF fixed target program.
- Experiments with polarized positron beam are possible.
ELIC R&D Requirements

• To achieve luminosity at $10^{33}$ cm$^{-2}$ sec$^{-1}$ and up
  ▪ High energy electron cooling with or without circulator ring

• To achieve luminosity at $\sim 10^{35}$ cm$^{-2}$ sec$^{-1}$
  ▪ Crab cavity
  ▪ Stability of intense ion beams
  ▪ Beam-beam interactions
  ▪ Detector R&D for high repetition rate (1.5 GHz)
ELIC R&D: Electron Cooling

**Issue**
- To suppress IBS, reduce emittances, provide short ion bunches.
- Effective for heavy ions (higher cooling rate), difficult for protons.

**State-of-Art**
- Fermilab electron cooling demonstration (4.34 MeV, 0.5 A DC)
- Magnetic field in the cooling section - 100 G
- Feasibility of EC with bunched beams remains to be demonstrated.

**ELIC Circulator Cooler**
- 3 A CW electron beam, up to 125 MeV
- Non-polarized source (present/under developing) can deliver nC bunch
- SRF ERL able to provide high average current CW beam
- Circulator cooler for reducing average current from source/ERL
- Electron bunches circulate 100 times in a ring while cooling ion beam
- Fast (300 ps) kicker operating at 15 MHz rep. rate to inject/eject bunches into/out circulator-cooler ring
ELIC R&D: Crab Crossing

- High repetition rate requires crab crossing to avoid parasitic beam-beam interaction
- Crab cavity needed to avoid luminosity reduction
- Minimizing crossing angle reduces crab cavity challenges and required R&D

- Routes of optimization
  - IP configuration optimization
  - “Lambertson”-type final focusing quad
    ➔ angle reduction: 100 mrad ➔ 30 mrad

- Crab cavity Development
  Electron: 1.2 MV – within state of art
    (KEK, single Cell, 1.4 MV)
  Ion: 24 MV
    (Integrated B field on axis 180 G / 4 m)

- Crab Crossing R&D program planned
  - Understand gradient limit, packing factor
  - Multi-cell SRF crab cavity design capable for high current operation.
  - Phase and amplitude stability requirements
  - Beam dynamics study with crab crossing
ELIC R&D: Instability of Ion Beam

Stacking of ion beam
- Stacking/accumulation process
  - Multi-turn (10 – 20) injection from SRF linac to pre-booster
  - Damping of injected beam
  - Accumulation of 1 A coasted beam at space charge limited emittance
  - RF bunching/acceleration
  - Accelerating beam to 3 GeV, then inject into large booster
- Ion space charge effect dominates at low energy region
- Method: stochastic cooling

Pre-cooling in collider ring (30 GeV)
- stochastic cooling

### Stacking proton beam in pre-booster with stochastic cooling

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam Energy</td>
<td>MeV</td>
<td>200</td>
</tr>
<tr>
<td>Momentum Spread</td>
<td>%</td>
<td>1</td>
</tr>
<tr>
<td>Pulse current from linac</td>
<td>mA</td>
<td>2</td>
</tr>
<tr>
<td>Cooling time</td>
<td>s</td>
<td>4</td>
</tr>
<tr>
<td>Accumulated current</td>
<td>A</td>
<td>0.7</td>
</tr>
<tr>
<td>Stacking cycle duration</td>
<td>Min</td>
<td>2</td>
</tr>
<tr>
<td>Beam emittance, norm.</td>
<td>μm</td>
<td>12</td>
</tr>
<tr>
<td>Laslett tune shift</td>
<td></td>
<td>0.03</td>
</tr>
</tbody>
</table>

### Transverse stochastic cooling of coasted proton beam after injection in collider ring

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam Energy</td>
<td>GeV</td>
<td>30</td>
</tr>
<tr>
<td>Momentum Spread</td>
<td>%</td>
<td>0.5</td>
</tr>
<tr>
<td>Current</td>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>Freq. bandwidth of amplifiers</td>
<td>GHz</td>
<td>5</td>
</tr>
<tr>
<td>Minimal cooling time</td>
<td>Min</td>
<td>8</td>
</tr>
<tr>
<td>Initial transverse emittance</td>
<td>μm</td>
<td>16</td>
</tr>
<tr>
<td>IBS equilibrium transverse emitt.</td>
<td>μm</td>
<td>0.1</td>
</tr>
<tr>
<td>Laslett tune shift at equilibrium</td>
<td></td>
<td>0.04</td>
</tr>
</tbody>
</table>
ELIC R&D: Beam-Beam

Beam-beam features

- Asymmetric colliding beams (9 GeV/2.5 A on 225 GeV/1 A)
- IP design
  - Short ion bunch (5 mm), strong final focusing ($\beta^*=5$ mm)
  - High repetition rate (up to 1.5 GHz)
  - Large synchrotron tune (up to 0.25/0.06)
- Multiple IPs
- Crab crossing

Simulation studies

- PIC code BeamBeam3d (LBL)
- Single IP, no crossing, 7/150 GeV
- Working point: $e(0.91, 0.88, 0.25)$, $p(0.71, 0.7, 0.06)$
- Saturated at 70% of peak luminosity $4.2 \times 10^{34}$ cm$^{-2}$s$^{-1}$
Summary

ELIC Conceptual Design provides
- CM energy up to 90 GeV, light to heavy ions (A=208)
- Unprecedented high luminosity (up to $6 \cdot 10^{33}$ cm$^{-2}$ sec$^{-1}$ for e-p)
- High spin polarization for both electron & light ion beams
- Simultaneous operation of collider and CEBAF fixed target
- Design evolution towards more robust
- Increase using existed and proved technologies
- Reduces technology challenges and required R&D effort

Recent R&D Advances
- Electron cooling and circulator cooler
- Crab crossing and crab cavity
- Instability of intense ion beam
- Beam-beam effects

Continue design optimization

We have developed a detailed Pre-R&D program
ELIC Study Group & Collaborators


W. Fischer, C. Montag - Brookhaven National Laboratory

V. Danilov - Oak Ridge National Laboratory

V. Dudnikov - Brookhaven Technology Group

P. Ostroumov - Argonne National Laboratory

V. Derenchuk - Indiana University Cyclotron Facility

A. Belov - Institute of Nuclear Research, Moscow-Troitsk, Russia

V. Shemelin - Cornell University
Zeroth–Order Design Report for the Electron-Ion Collider at CEBAF


Thomas Jefferson National Accelerator Facility
Newport News, Virginia, USA

W. Fischer, C. Montag
Brookhaven National Laboratory
Upton, New York, USA

V. Danilov
Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

V. Dudnikov
Brookhaven Technology Group
New York, New York, USA

P. Ostroumov
Argonne National Laboratory
Argonne, Illinois, USA

V. Derenchuk
Indiana University Cyclotron Facility
Bloomington, Indiana, USA

A. Belov
Institute of Nuclear Research

http://casa.jlab.org/research/elic/elic_zdr.doc