Parallel Finite Element Particle-In-Cell Code for Simulations of Space-Charge Dominated Beam-Cavity Interactions

Arno Candel

Andreas Kabel, Liequan Lee, Zenghai Li, Cho Ng, Ernesto Prudencio, Greg Schussman, Ravi Uplenchwar and Kwok Ko

ACD, Stanford Linear Accelerator Center

Cecile Limborg

LCLS, Stanford Linear Accelerator Center

PAC07, Albuquerque, June 25-29, 2007

* Work supported by U.S. DOE ASCR, BES & HEP Divisions under contract DE-AC02-76SF00515
Parallel Finite Element Time-Domain

Maxwell’s Wave Equation in Time-Domain:

\[
\frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} + \nabla \times \nabla \times \mathbf{E} = -\mu \frac{\partial \mathbf{J}}{\partial t}
\]

- **Spatial discretization** -
 Conformal, unstructured grid with curved surfaces
 Higher-order (p=1…6) Whitney basis functions:
 \[
 \mathbf{E}(\mathbf{x}, t) = \sum_i e_i(t) \cdot \mathbf{N}_i(\mathbf{x})
 \]
 ![LCLS RF Gun](image)

- **Time integration** -
 Unconditionally stable implicit Newmark scheme (to do: solve Ax=b)

- **Parallelization** -
 MPI on distributed memory platforms
SciDAC Codes – Pic3P/Pic2P

- **Pic3P** – Parallel 3D FE PIC Code
- **Pic2P** – Parallel 2.5D FE PIC Code

1) Compute particle current \(\mathbf{J} = \rho \mathbf{v} \)
2) Calculate EM fields from Maxwell’s Eqs.
3) Push particles \(\frac{d\mathbf{p}}{dt} = q(\mathbf{E} + \mathbf{v} \wedge \mathbf{B}) \)

Higher-order particle-field coupling, no interpolation required

1st successful implementation of self-consistent, charge-conserving PIC code with conformal Whitney elements on unstructured FE grid
Pic2P Simulation of LCLS RF Gun

- **Pic2P** – Code from 1st principles, accurately includes effects of space charge, retardation, and wakefields
- Uses conformal grid, higher-order particle-field coupling and parallel computing for large, fast and accurate simulations
LCLS RF Gun Bunch Radius

RMS Bunch Radius vs Z

\(\sigma_r / \text{mm} \)

\(r=1 \text{ mm} \)
10 ps
\(\text{no solenoid} \)

MAFIA
Pic2P
PARMELA

1.5 nC
1 nC
0.5 nC
10^{-6} \text{ nC}

Z / cm
Normalized Transverse RMS Emittance vs Z

$r=1$ mm
10 ps
no solenoid

PARMELA: No retardation

MAFIA
Pic2P
PARMELA

Z / cm

ε_x / mm-mrad

1.5 nC
1 nC
0.5 nC
10^{-6} nC
LCLS RF Gun Phasespace (1.5 nC)
Pic2P - Performance

Normalized Transverse RMS Emittance vs Z

Parallel Speedup

Pic2P 100k DOFs, 10 minutes!

Pic2P with parallel computing:
Highly accurate results during a coffee break!
LCLS Injector Modeling

- **PIC in long structures** – Klystrons, injectors, … Active research

- **Adaptive refinement** – Efficient simulations of long structures

RF gun + drift with focusing solenoid
Z=60 cm

only scattered fields shown
Summary

- Parallel, conformal, higher-order Finite Element electromagnetic Particle-In-Cell SciDAC codes
 Pic3P/Pic2P introduced
- PIC simulations of LCLS RF gun (Pic2P)
- Benchmarked against MAFIA/PARMELA
- Work in progress: PIC in long structures
- Petascale computing will enable start-to-end 3D modeling of LCLS injector (Pic3P)