EMMA – The World’s First Non-Scaling FFAG

Rob Edgecock
STFC Rutherford Appleton Laboratory
for the EMMA Collaboration*

*BNL, CERN, CI, FNAL, JAI, LPSC Grenoble, STFC, TRIUMF
• Introduction
• Aims of the EMMA project
• Lattice studies and tracking
• Hardware status
• Time schedule
• Conclusions
Introduction

- **NS-FFAGs:**
 - originally invented for muon acceleration
 - since then: high power proton driver
 proton/carbon therapy

- **No such machine ever built:**
 - resonance crossings
 - asynchronous acceleration
 - tiny momentum compaction

- **Proof-of-principle NS-FFAG:**
 - prove NS optics work!
 - study features in detail

- **Funding:** generic as possible

- **Simplicity:** model muon machines

Electron Model of Muon Acceleration
Many Applications
• Demonstrate that non-scaling optics work

• Study resonances in detail:
 - emittance growth vs acceleration rate
 - “ “ vs tune variation
 - “ “ vs parabola shape
 - effect of errors
 - detailed probe using injector

• Study longitudinal dynamics in detail:
 - transmission vs parameter values
 - emittance growth vs parameter values
 - tof behaviour; effect of non-parabolic nature
 - effect of moving parabola
 - effect of errors

• Check effect of transverse dynamics

• Compare with predictions

•
- **Needs a flexible injector:**
 - injection at any energy
 - small emittance
 - sufficient intensity in a single bunch

Energy Recovery Linac Prototype at DL
- ERLP has been built
- Is currently being commissioned
• Consortium called CONFORM created

• Proposal to UK Basic Technology Fund:
 - for studies of basic technology
 - generic as possible
 - three WPs
 EMMA
 charged particle therapy
 other applications

• Successful!

• Funding started 1st April

• Work already started

• Total: £8.2M

• For EMMA construction: £5.6M
EMMA Lattices

- **Basic lattice:**
 - 10-20 MeV (scaling)
 - Doublet (cost)
 - 42 cells (number of cell.turns)
 - 1.3GHz RF (scaling + ERLP)
 - 19 cavities (inj. & ext.)
 - 394.481mm cell length
 - 16.57m circumference

- **EMMA operation mode:**
 - 10-20Hz
 - 1 bunch
 - 80pC
 - $\varepsilon_{n,rms} = 3\pi$ mm mrad
 - 2ps rms length
 - scan aperture

- **Documentation at:**
 - http://www.conform.ac.uk/documents/emma
Different Lattices

Requires:
- indep. dipole & quadrupole fields
- sufficient magnet aperture
- RF frequency: -4.0 to 1.5MHz
- RF gain: ~20kV to 180kV/cavity
• Started with ELBE cavity: $\Omega_s = 1.4M\Omega$

• Evolved to toroidal design: $\Omega_s = 4.3M\Omega$

• Various power options under consideration
Diagnostics

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Device</th>
<th>Number</th>
<th>Required resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam position</td>
<td>4 button BPM</td>
<td>2/plane/cell in ring</td>
<td>50µm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 in injection & diagnostics lines</td>
<td></td>
</tr>
<tr>
<td>Beam profile</td>
<td>OTR screens</td>
<td>3 in ring, 1 in injection and diagnostics lines</td>
<td>100µm pixel size</td>
</tr>
<tr>
<td></td>
<td>Wire scanners</td>
<td>≥4</td>
<td></td>
</tr>
<tr>
<td>Beam current</td>
<td>Resistive wall monitor</td>
<td>4 RWMs</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 scope</td>
<td></td>
</tr>
<tr>
<td>Phase</td>
<td>Resistive wall monitor</td>
<td>As above</td>
<td>10 degrees</td>
</tr>
<tr>
<td>Transmission</td>
<td>Resistive wall monitor</td>
<td>As above</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td>Faraday cup</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beam loss</td>
<td>Beam Loss Monitor</td>
<td>4</td>
<td>2%</td>
</tr>
<tr>
<td>Momentum</td>
<td>BPMs and TOF from RWMs</td>
<td></td>
<td>100keV</td>
</tr>
<tr>
<td>Emittance</td>
<td>Screens</td>
<td>3 in diagnostics line</td>
<td>10%</td>
</tr>
<tr>
<td>Extracted momentum</td>
<td>Spectrometer</td>
<td>1 in diagnostics line</td>
<td>1%</td>
</tr>
<tr>
<td>Longitudinal profile</td>
<td>Transverse deflecting cavity and screen</td>
<td>1 in diagnostics line</td>
<td>20keV and 5 degrees</td>
</tr>
</tbody>
</table>

- **Requirements agreed**
- **Hardware under study**
Simulations:
- lattice design complete
- tracked in 2 codes
- preliminary injection/extraction scheme
- injection/extraction lines being designed

Magnets:
- 3D modelling on-going
- prototypes ordered
- PSU design underway

RF:
- 3D modelling complete
- thermal and structural analysis underway
- power system design advanced

Diagnostics:
- BPM solution found
- screens/wires on-going
- others under study

Others:
- engineering/services/controls advancing
<table>
<thead>
<tr>
<th>ID</th>
<th>Task Name</th>
<th>Duration</th>
<th>Start</th>
<th>Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Funding available</td>
<td>0 days</td>
<td>Mon 02/04/07</td>
<td>Mon 02/04/07</td>
</tr>
<tr>
<td>24</td>
<td>Conception</td>
<td>9.8 mons</td>
<td>Fri 01/04/05</td>
<td>Fri 30/12/05</td>
</tr>
<tr>
<td>25</td>
<td>Feasibility Phase</td>
<td>16.25 mons</td>
<td>Mon 02/01/06</td>
<td>Fri 30/03/07</td>
</tr>
<tr>
<td>26</td>
<td>Project approval notified</td>
<td>0 days</td>
<td>Fri 01/12/06</td>
<td>Fri 01/12/06</td>
</tr>
<tr>
<td>27</td>
<td>Design</td>
<td>12 mons</td>
<td>Mon 02/04/07</td>
<td>Mon 10/03/08</td>
</tr>
<tr>
<td>28</td>
<td>Design review 1</td>
<td>1 day</td>
<td>Mon 12/11/07</td>
<td>Mon 12/11/07</td>
</tr>
<tr>
<td>29</td>
<td>Design review 2</td>
<td>1 day</td>
<td>Tue 29/01/08</td>
<td>Tue 29/01/08</td>
</tr>
<tr>
<td>30</td>
<td>Procurement</td>
<td>16.2 mons</td>
<td>Mon 30/04/07</td>
<td>Fri 01/08/08</td>
</tr>
<tr>
<td>31</td>
<td>All major components on site</td>
<td>0 days</td>
<td>Fri 01/08/08</td>
<td>Fri 01/08/08</td>
</tr>
<tr>
<td>32</td>
<td>Infrastructure upgrade</td>
<td>10 mons</td>
<td>Tue 01/04/08</td>
<td>Wed 14/01/09</td>
</tr>
<tr>
<td>33</td>
<td>Off line assembly and test sub systems</td>
<td>8.2 mons</td>
<td>Mon 09/06/08</td>
<td>Mon 09/02/09</td>
</tr>
<tr>
<td>34</td>
<td>Installation in Accelerator Hall</td>
<td>4.1 mons</td>
<td>Tue 03/02/09</td>
<td>Wed 27/05/09</td>
</tr>
<tr>
<td>35</td>
<td>Test systems in Accelerator Hall</td>
<td>2 mons</td>
<td>Thu 26/05/09</td>
<td>Wed 22/07/08</td>
</tr>
<tr>
<td>36</td>
<td>Construction project close out review</td>
<td>1 day</td>
<td>Thu 23/07/09</td>
<td>Thu 23/07/09</td>
</tr>
<tr>
<td>37</td>
<td>EMMA construction complete</td>
<td>0 days</td>
<td>Thu 23/07/09</td>
<td>Thu 23/07/09</td>
</tr>
<tr>
<td>38</td>
<td>Commission with electrons</td>
<td>2 mons</td>
<td>Fri 24/07/09</td>
<td>Thu 17/09/09</td>
</tr>
<tr>
<td>39</td>
<td>Construction project post implementation review</td>
<td>1 day</td>
<td>Fri 18/09/09</td>
<td>Fri 18/09/09</td>
</tr>
<tr>
<td>40</td>
<td>Detailed experimental programme</td>
<td>0 days</td>
<td>Red circle</td>
<td>Red circle</td>
</tr>
<tr>
<td>41</td>
<td>Full ring studies</td>
<td>6 mons</td>
<td>Mon 21/09/09</td>
<td>Fri 05/03/10</td>
</tr>
<tr>
<td>42</td>
<td>Advanced ring studies</td>
<td>4.5 mons</td>
<td>Mon 08/03/10</td>
<td>Fri 09/07/10</td>
</tr>
<tr>
<td>43</td>
<td>EMMA phase 1 beam studies complete</td>
<td>0 days</td>
<td>Fri 09/07/10</td>
<td>Fri 09/07/10</td>
</tr>
</tbody>
</table>
Conclusions

• EMMA will
 - prove the principle of NS-FFAGs
 - investigate dynamics for future designs

• Now funded as part of the CONFORM project

• Designed by international collaboration

• Machine design is well-advanced

• Prototypes have/are being ordered

• Construction complete & commissioning started ~2 years

• For more details, see the posters!