30 GHZ HIGH-GRADIENT ACCELERATING STRUCTURE TEST RESULTS

Jose Alberto Rodriguez, PAC 2007
Contents

• High power test-stand
• Typical testing history of a structure
• Brief description of the structures tested
• Experimental results
• Conclusions
High power Test-stand

CTF3 Facility

30 GHz test stand

12 GHz Two beam test stand

Jose Alberto Rodriguez, PAC 2007
Testing history of a structure

• Installation ... 7 days
 Low level rf measurements
 Leak checking
 Pumping

• Initial conditioning .. 7 days

• Intermediate characterization 7 days
 Breakdown rates vs. gradient @ 70 ns

• Final conditioning ... 3 days

• Final characterization 20 days
 Breakdown rates vs. gradient @ 70 ns
 Breakdown rates vs. gradient @ 40 ns
 Pulse length dependence
 Dark currents and ion currents measurements
 Investigation of dark current capture

Jose Alberto Rodriguez, PAC 2007
Structures tested

<table>
<thead>
<tr>
<th>Year</th>
<th>Structures Tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>SHUTDOWN</td>
</tr>
<tr>
<td></td>
<td>SHUTDOWN</td>
</tr>
<tr>
<td></td>
<td>SHUTDOWN</td>
</tr>
<tr>
<td></td>
<td>Circular Mo $2\pi/3$</td>
</tr>
<tr>
<td>2006</td>
<td>HDS 60 Cu Large</td>
</tr>
<tr>
<td></td>
<td>HDS 60 Cu Small</td>
</tr>
<tr>
<td></td>
<td>HDS 11 Mo Large</td>
</tr>
<tr>
<td></td>
<td>HDS 11 Ti Large</td>
</tr>
<tr>
<td></td>
<td>HDS 11 Al Large</td>
</tr>
<tr>
<td>2007</td>
<td>SHUTDOWN</td>
</tr>
<tr>
<td></td>
<td>Circular Cu $\pi/2$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>HDS60L [S]</th>
<th>HDS11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency [GHz]</td>
<td>29.985</td>
<td></td>
</tr>
<tr>
<td>Number of cells</td>
<td>60</td>
<td>11</td>
</tr>
<tr>
<td>Phase advance per cell</td>
<td>60°</td>
<td></td>
</tr>
<tr>
<td>Beam aperture [mm]</td>
<td>1.9 [1.6]</td>
<td>1.9</td>
</tr>
<tr>
<td>v_g/c [%]</td>
<td>8 [5]</td>
<td>8</td>
</tr>
<tr>
<td>Fill time [ns]</td>
<td>5.2</td>
<td>0.8</td>
</tr>
<tr>
<td>E_{surf} / E_{acc}</td>
<td>1.8 [1.7]</td>
<td>1.8</td>
</tr>
<tr>
<td>P_{INC} [MW] for 100 MV/m in first cell</td>
<td>43.6 [24.0]</td>
<td>43.6</td>
</tr>
</tbody>
</table>

Jose Alberto Rodriguez, PAC 2007
Pulse length dependence

\[P_{\text{inc}} \text{ [MW]} = \frac{U}{P_{\text{inc}}} \]

- HDS60L Cu: \(P \sim T^{-0.5} \)
- HDS60S Cu: \(P \sim T^{-0.5} \)
- HDS11 Al: \(P \sim T^{-0.7} \)
- HDS11 Ti: \(P \sim T^{-0.5} \)
- HDS11 Mo: \(P \sim T^{-0.6} \)

Jose Alberto Rodriguez, PAC 2007
Inspection of the surface

HDS 60 L

HDS 60 S

PINC

Jose Alberto Rodriguez, PAC 2007
Conclusions

• The structures were heavily damaged during the high power tests. Therefore, some of the conclusions listed here will need to be verified with additional tests.
• First quadrant based structures were tested.
• The performance was ~ 20% worse than expected from circular structure tests.
• We believe that we understand why this happened and a second generation of quadrant based structures will be tested in the near future.
• Neither Al nor Ti nor Mo performed better than Cu at the required CLIC breakdown rates and pulse lengths.
• Pulse length dependences of HDS type structures may be stronger than for circular structures.
• Results of similar structures tested at 11.4 GHz show weak or no frequency dependence.

Jose Alberto Rodriguez, PAC 2007
Conditioning history

HDS 60 L

HDS 60 S

Jose Alberto Rodriguez, PAC 2007
Conditioning history

HDS 11 Mo

HDS 11 Al

Jose Alberto Rodriguez, PAC 2007
Breakdown rates

Jose Alberto Rodriguez, PAC 2007
Breakdown rates

Jose Alberto Rodriguez, PAC 2007