Measurement of Electron Cyclotron Resonance Ion Source Bremsstrahlung and Ion Production Time Evolution

Tommi Ropponen
University of Jyväskylä, Department of Physics (JYFL)
Finland

September 16, 2008
Overview

1. Radial measurements
2. Data acquisition
Overview

1. Radial measurements
2. Data acquisition
3. The effect of collimation
Overview

1. Radial measurements
2. Data acquisition
3. The effect of collimation
4. Time evolution
Overview

1. Radial measurements
2. Data acquisition
3. The effect of collimation
4. Time evolution
5. Conclusions
Overview

1. Radial measurements
2. Data acquisition
3. The effect of collimation
4. Time evolution
5. Conclusions
Why radial measurement?

1. Main interest: high energy electron population
2. Strong plasma flux follows magnetic field lines
Why radial measurement?

1. Main interest: high energy electron population
2. Strong plasma flux follows magnetic field lines
1. Distance between ECRIS chamber and Ge detector about 1 m

2. The effect of opening and shielding around the collimator was studied
 - 0.5 mm² → 4.0 mm²
 - Hole did not change the count rate or the shape of the spectra
 - Shielding changed the count rate and the shape of the spectra

Tommi Ropponen (tommi.ropponen@phys.jyu.fi), JYFL
Measurement geometry

1. Distance between ECRIS chamber and Ge detector about 1 m
2. The effect of opening and shielding around the collimator was studied
 - 0.5 mm2 → 4.0 mm2
 - Hole did not change the count rate or the shape of the spectra
 - Shielding changed the count rate and the shape of the spectra
Why radial measurement?

Radial measurement geometry & setup

- Reference timing signal (TTL, 1.76/5.92 s)
- 14 GHz GUNN-type oscillator

Unpublished figure

Tommi Ropponen (tommi.ropponen@phys.jyu.fi), JYFL
Bremsstrahlung time evolution, ECRIS 2008, ANL
Why radial measurement?

Radial measurement geometry & setup

Reference timing signal (TTL, 1.76/5.92 s)

- 14 GHz GUNN-type oscillator

- RF switch, 40 ns (0–100 %)

Unpublished figure

Tommi Ropponen (tommi.ropponen@phys.jyu.fi), JYFL

Bremsstrahlung time evolution, ECRIS 2008, ANL
Why radial measurement?

Radial measurement geometry & setup

- Reference timing signal (TTL, 1.76/5.92 s)
- 14 GHz GUNN-type oscillator
- RF switch, 40 ns (0–100 %)

Unpublished figure

Tommi Ropponen (tommi.ropponen@phys.jyu.fi), JYFL

Bremsstrahlung time evolution, ECRIS 2008, ANL
Measurement setup — schematic

- Germanium detector
- Digital Signal Processing unit (TNT2)
Why radial measurement?

Radial measurement geometry & setup

- Germanium detector
- Digital Signal Processing unit (TNT2)
- Digital Oscilloscope

Unpublished figure
Why radial measurement?

Radial measurement geometry & setup

Measurement setup — schematic

- Germanium detector
- Digital Signal Processing unit (TNT2)
- Digital Oscilloscope

Unpublished figure
Hardware

1. Shaping time 2.0 μs (rise time + flat top)
2. Energy resolution (152Eu): 4.2 keV @ 444 keV
Hardware

1. Shaping time 2.0 μs (rise time + flat top)
2. Energy resolution (152Eu): 4.2 keV @ 444 keV
3. ADC overflows rejected on-the-fly at the TNT2
Hardware

1. Shaping time 2.0 μs (rise time + flat top)
2. Energy resolution (152Eu): 4.2 keV @ 444 keV
3. ADC overflows rejected on-the-fly at the TNT2
4. Raw data recorded to computer
Hardware

1. Shaping time 2.0 μs (rise time + flat top)
2. Energy resolution (152Eu): 4.2 keV @ 444 keV
3. ADC overflows rejected on-the-fly at the TNT2
4. Raw data recorded to computer
Software: C++ code on Unix/Linux platform

1. 680 RF pulses taken into account
2. Pile-ups etc. removed

Tommi Ropponen (tommi.ropponen@phys.jyu.fi), JYFL
Software: C++ code on Unix/Linux platform

1. 680 RF pulses taken into account
2. Pile-ups etc. removed
3. “Bad” RF pulses rejected
Software: C++ code on Unix/Linux platform

1. 680 RF pulses taken into account
2. Pile-ups etc. removed
3. “Bad” RF pulses rejected
4. Relative efficiency calibration
Software: C++ code on Unix/Linux platform

1. 680 RF pulses taken into account
2. Pile-ups etc. removed
3. "Bad" RF pulses rejected
4. Relative efficiency calibration
5. Data sorted with 2 ms time steps
Software: C++ code on Unix/Linux platform

1. 680 RF pulses taken into account
2. Pile-ups etc. removed
3. “Bad” RF pulses rejected
4. Relative efficiency calibration
5. Data sorted with 2 ms time steps
Change of the shielding

1. Lower part of the spectra relatively unchanged
 - High energy part directly from plasma chamber
 - Lower energy part from scattering, through the coils/shielding

2. Original shielding (Pb plates) around the collimator: “hump”

Steady state Ar plasma 1500 ms, 500 W, 500/500 A, 2.6e-7 mbar

Modified from submission to NIMA

Tommi Ropponen (tommi.ropponen@phys.jyu.fi), JYFL

Bremsstrahlung time evolution, ECRIS 2008, ANL
Change of the shielding

1. Lower part of the spectra relatively unchanged
 - High energy part directly from plasma chamber
 - Lower energy part from scattering, through the coils/shielding

2. Original shielding (Pb plates) around the collimator: “hump”

3. Increased shielding: no “hump”

Steady state Ar plasma 1500 ms, 500 W, 500/500 A, 2.6e-7 mbar

Modified from submission to NIMA

Original shielding and collimation
Changed shielding and collimation

Counts / 2 ms
Energy [keV]
Change of the shielding

1. **Lower part of the spectra relatively unchanged**
 - High energy part directly from plasma chamber
 - Lower energy part from scattering, through the coils/shielding

2. **Original shielding (Pb plates) around the collimator: “hump”**

3. **Increased shielding: no “hump”**

Steady state Ar plasma 1500 ms, 500 W, 500/500 A, 2.6e-7 mbar

Modified from submission to NIMA

Steady state Ar plasma 1500 ms, 500 W, 500/500 A, 2.6e-7 mbar

Original shielding and collimation
Changed shielding and collimation

Counts / 2 ms
Energy [keV]

Modified from submission to NIMA
Time scale comparison with different shielding

- Different shielding does not affect the timescales
 - Steady state phase is reached at the same time

Ar plasma, 500 W, 500/500 A, 2.6e-7 mbar

Modified from submission to NIMA

Tommi Ropponen (tommi.ropponen@phys.jyu.fi), JYFL

Bremsstrahlung time evolution, ECRIS 2008, ANL
Different shielding does not affect the timescales

- Steady state phase is reached at the same time

Ar plasma, 500 W, 500/500 A, 2.6e-7 mbar
Total (integrated) count rate vs. time (argon plasma)

Ar plasma, 500 W, 2.6e-7 mbar

Binj 2.111 T, Bmin 0.388 T, Bext 1.019 T
Binj 2.011 T, Bmin 0.346 T, Bext 0.946 T
Binj 1.945 T, Bmin 0.321 T, Bext 0.901 T

Modified from submission to NIMA

Tommi Ropponen (tommi.ropponen@phys.jyu.fi), JYFL

Bremsstrahlung time evolution, ECRIS 2008, ANL
Total (integrated) count rate versus time

Argon plasma, 500/500 A, 2.6e-7 mbar

Unpublished

690 W
500 W
300 W

Time [ms]

Total counts / 2 ms

Tommi Ropponen (tommi.ropponen@phys.jyu.fi), JYFL

Bremsstrahlung time evolution, ECRIS 2008, ANL
Total (integrated) count rate vs. time (oxygen plasma)

O plasma, 500/500 A, 2.6e-7 mbar

Unpublished

680 W
500 W
300 W
1. Argon plasma, 500 W, 500/500 A, 2.6e-7 mbar
2. Time T=0 corresponds to the leading edge of the RF pulse ("RF on")

"RF on" phase, original shielding
“RF on” phase animation

1. Argon plasma, 500 W, 500/500 A, 2.6e-7 mbar
2. Time T=0 corresponds to the leading edge of the RF pulse ("RF on")

“RF on” phase, original shielding
Argon charge states & bremsstrahlung

1. Preglow: from Ar^{5+} to Ar^{8+}
2. Rise times 5.5–6.5 ms
Argon charge states & bremsstrahlung

1. Preglow: from Ar^{5+} to Ar^{8+}
2. Rise times 5.5–6.5 ms
Argon charge states & bremsstrahlung

1. Steady state at 200 ms
2. Bremsstrahlung count rate saturates after ion currents

![Graph showing argon charge states and bremsstrahlung]

Ar plasma, the whole RF pulse

- Ar$^{5+}$
- Ar$^{7+}$
- Ar$^{8+}$
- Ar$^{12+}$
- Counts

submitted to NIMA

Ion current [μA] vs. Time [ms]

Total counts / 2 ms

Tommi Ropponen (tommi.ropponen@phys.jyu.fi), JYFL
Argon charge states & bremsstrahlung

1. Steady state at 200 ms
2. Bremsstrahlung count rate saturates after ion currents

![Graph showing ion current and total counts over time for different Ar charge states.](attachment:graph.png)

Legend:
- **Time (ms)**: The x-axis represents time in milliseconds.
- **Ion current [µA]**: The y-axis represents the ion current in microamperes.
- **Total counts / 2 ms**: The y-axis indicates the total number of counts every 2 milliseconds.
- **Ar plasma, the whole RF pulse**: The graph shows the behavior of different Ar charge states over time.

Submissions:
- Submitted to NIMA

Tommi Ropponen (tommi.ropponen@phys.jyu.), JYFL
Stochastic heating theory vs. measurements

1. Modified stochastic heating theory of Sergeichev et al.
2. ECR settings can be used (RF power, B field)

![Graph showing energy vs. time with different lines for different Q values and Argon plasma.]

Sergeichev et al., Q=1
Sergeichev et al., Q=3
Sergeichev et al., Q=5
Argon plasma
Sergeichev et al., Q=44

Time evolution

Spectrum time evolution animations

Ion production

Theory vs. measurements
Stochastic heating theory vs. measurements

1. Modified stochastic heating theory of Sergeichev et al.
2. ECR settings can be used (RF power, B field)
3. Demands very high Q value to be accurate, but
 - First 100 ms ok
 - After 100 ms theory overshoots the measured values
Stochastic heating theory vs. measurements

1. Modified stochastic heating theory of Sergeichev et al.
2. ECR settings can be used (RF power, B field)
3. Demands very high Q value to be accurate, but
 - First 100 ms ok
 - After 100 ms theory overshoots the measured values
Part I

1. The effect of collimation and shielding has to be studied more
 - Time scales are not affected
 - Shape of the spectra is affected

2. “Hump” ends at around 400 keV
 - Evidence from lower and higher energy electron populations?
1. The effect of collimation and shielding has to be studied more
 - Time scales are not affected
 - Shape of the spectra is affected

2. “Hump” ends at around 400 keV
 - Evidence from lower and higher energy electron populations?
Part II

1. High Bmin — instabilities in bremsstrahlung counts
2. Steady state for argon bremsstrahlung plasma at 200 ms
3. Steady state for oxygen bremsstrahlung plasma at 600 ms or more
Part II

1. High B_{min} — instabilities in bremsstrahlung counts
2. Steady state for argon bremsstrahlung plasma at 200 ms
3. Steady state for oxygen bremsstrahlung plasma at 600 ms or more
Part III

1. Several preglow peaks observed
 - Rise times of a few milliseconds

2. Ion currents reach steady state before bremsstrahlung emission
 - Intensity could be maintained high with pulsed RF?
 - Needs to be studied
Several preglow peaks observed
 - Rise times of a few milliseconds

Ion currents reach steady state before bremsstrahlung emission
 - Intensity could be maintained high with pulsed RF?
 - Needs to be studied
Stochastic heating theory vs. measurements

- ECR settings as input values
- No friction between particles, no stochastic limit
- Needs relatively high Q values but then overshoots
- Radial resonance limiting the measured energies?
 - 0.85 T at the pole → resonance field for about 360 keV
 - No radial resonance field for electrons with higher energy
 - Saturation of measured endpoint energies
Part IV

Stochastic heating theory vs. measurements

- ECR settings as input values
- No friction between particles, no stochastic limit
- Needs relatively high Q values but then overshots
- Radial resonance limiting the measured energies?
 - 0.85 T at the pole → resonance field for about 360 keV
 - No radial resonance field for electrons with higher energy
 - Saturation of measured endpoint energies
Thanks to

- Dr. Hannu Koivisto (JYFL, ECR)
- Dr. Olli Tarvainen (LANL)
- Dr. Pekka Suominen (Prizztech Ltd)
- Dr. Pete Jones (JYFL, nuclear spectroscopy)
- Pauli Peura (JYFL, nuclear spectroscopy)
- Prof. Rauno Julin (JYFL, nuclear spectroscopy)
- Taneli Kalvas (JYFL, RADEF)