IONIZATION COOLING AND MUON COLLIDERS*
Rolland P. Johnson#, Muons, Inc., Batavia, IL USA

Abstract
New inventions are rapidly improving the prospects for a high luminosity muon collider at the energy frontier. Recent analytical calculations, numerical simulations, and experimental measurements are coming together to make a strong case for a series of machines to be built, where each one is a precursor to the next, with its own unique experimental and accelerator physics programs. The ultimate machine is an energy-frontier muon collider. In about 4 years, the LHC and Tevatron will tell us the desired energy of the next lepton collider. At that time we must understand the needed technology and be ready to design, cost, and build the appropriate muon collider.

INTRODUCTION

In the last year, several things have come together to reinvigorate muon collider enthusiasts: 1) There is a great interest to have a plan for a next-generation project that would continue the energy-frontier accelerator tradition in the US. 2) The uncertainties in need, cost, and siting of the International Linear Collider (ILC) have made it clear even to strong ILC supporters that a “Plan B” is prudent. 3) While impressive work has been done toward a neutrino factory based on a muon storage ring [1,2], the physics case for such a machine will have to wait for results of experiments that are just getting started. Thus there is some muon-related accelerator expertise that is available for muon collider development. 4) As discussed below, several new ideas have arisen in the last five years for six-dimensional (6D) muon beam cooling. The advantage of achieving high luminosity in a muon collider with beams of smaller emittance and fewer muons has been recognized as a great advantage for many reasons [3], including less proton driver power on target, fewer detector background issues, and relaxed site boundary radiation limitations.

Another advantage of small 6D emittance for a collider is that the cost of muon acceleration can be reduced by using the high frequency RF techniques being developed for the ILC. To the extent that muon beams can be cooled well enough, the muon collider is an upgrade path for the ILC or its natural evolution if LHC results imply that the ILC energy is too low or if its cost is too great.

Effective 6D cooling and the recirculating of muons in the same RF structures that are used for the proton driver may enable a powerful new way to feed a storage ring for a neutrino factory [4]. This would put neutrino factory and muon collider development on a common path such that a muon collider could be realized in several stages, each independently funded and driven by high-energy physics goals, e.g. 1) a very cool stopping muon beam, 2) neutrino factory, 3) Higgs factory, 4) a lower-luminosity Z’ factory (if such a particle is found at the LHC), culminating in 5) an energy frontier collider.

IONIZATION COOLING PRICIPLES

All three components of a particle’s momentum are reduced as a particle passes through and ionizes some energy absorbing material. If the longitudinal momentum is regenerated by RF cavities, the angular divergence of the particle is reduced. This is the basic concept of ionization cooling. What can be done for a muon beam with this simple idea is almost amazing, especially considering that the muon lifetime is only 2.2 μs in its rest frame.

The idea that the transverse emittance of a beam could be reduced by passing it through an energy absorber originated in Novosibirsk many years ago [5,6]. Figure 1 is a schematic of the concept, showing how the angular divergence of a beam can be reduced.

Figure 1: Conceptual picture of the principle of Ionization Cooling. Each particle loses momentum by ionizing an energy absorber, where only the longitudinal momentum is restored by RF cavities. The angular divergence is reduced until limited by multiple scattering, so that a low-Z absorber is favored.

Ionization cooling of a muon beam involves passing a magnetically focused beam through an energy absorber, where the muon transverse and longitudinal momentum components are reduced, and through RF cavities, where only the longitudinal component is regenerated. After some distance, the transverse components shrink to the point where they come into equilibrium with the heating caused by multiple coulomb scattering. The equation describing the rate of cooling is a balance between these cooling (first term) and heating (second term) effects:

\[
\frac{d\epsilon_v}{ds} = -\frac{1}{\beta^2} \frac{dE_\mu}{ds} \epsilon_v + \frac{1}{\beta^3} \frac{\beta_1 (0.014)^2}{2E_\mu m_\mu \chi_0}
\]

Here \(\epsilon_v\) is the normalized emittance, \(E_\mu\) is the muon energy in GeV, \(dE_\mu/ds\) and \(\chi_0\) are the energy loss and radiation length of the absorber medium, \(\beta_1\) is the transverse beta-function of the magnetic channel, and \(\beta\) is the particle velocity. Muons passing through an absorber experience energy and momentum loss due to collisions with...
electrons. The derivations and discussions of the basic formulae of ionization cooling can be found in many places \[7,8\], where the energy loss is described by the Bethe-Bloch theory and the multiple-scattering heating is described by the Moliere theory \[9\].

Setting the heating and cooling terms equal defines the equilibrium emittance, the very smallest possible with the given parameters:

$$\varepsilon_{\text{eq}} = \frac{\beta_1 (0.014)^2}{2 \beta m_p \frac{dE}{ds} X_0}$$ \[2\].

A cooling factor \((F_{\text{cool}} = \frac{X_0 dE_p}{ds})\) can be uniquely defined for each material, and since cooling takes place in each transverse plane, the figure of merit is \(F_{\text{cool}}^2\). For a particular material, \(F_{\text{cool}}\) is independent of density, since energy loss is proportional to density, and radiation length is inversely proportional to density. The inverse of \(F_{\text{cool}}^2\) corresponds to the best equilibrium emittance that can be achieved. Super-conducting solenoidal focusing is used to give a value of \(\beta_1\) as low as 10 cm. Figure 2 shows \(F_{\text{cool}}^2\) for many materials of interest.

Gaseous hydrogen is the very best material that one can use from the standpoint of the final equilibrium emittance. Also, since the exponential cooling rate depends on the difference between the initial and final emittances, it provides the very best cooling rate.

![Transverse Cooling Effectiveness](image-url)

Figure 2: A comparison of the cooling figure of merit for light materials. The equilibrium beam emittance in each transverse plane is inversely proportional to the product of the energy loss and the radiation length.

Fundamental Limitations

The transverse beta function, \(\beta_1\), is proportional to the ratio of momentum divided by the magnetic field. So the lowest equilibrium emittance requires the lowest momentum and the highest field.

As implied by the Bethe-Bloch equation and shown on figure 3, the fact that \(dE/dx\) increases as the momentum decreases means that once the momentum is below a few hundred MeV/c, any transverse cooling is necessarily accompanied by longitudinal heating. To a certain extent, this unwanted heating can be mitigated by modifying the dispersion function \[10\] and/or changing the profile of an absorber with shaped edges.

![Energy loss for muons in various materials](image-url)

Figure 3: Energy loss for muons in various materials taken from the Particle Data Group \[12\], where the minimum \(dE/dx\) for hydrogen occurs near 300 MeV/c.

Emittance Exchange

To achieve longitudinal cooling requires emittance exchange with transverse oscillations. Emittance exchange, in turn, requires the introduction of a beam bend that creates dispersion, a correlation between the orbit and energy of a particle. Figure 4 shows the conceptual pictures of the two approaches that have recently been studied most. In the left of figure 4 the use of a wedge absorber is shown, where the beam is dispersed across a wedge of energy absorbing material such that higher momentum particles lose more energy. The muons become more monoenergetic after they pass through the wedge, while the transverse emittance is increased as part of the emittance exchange process. The right-hand side of figure 4 shows the technique that is part of the cooling channel discussed in the next section.

![Emittance exchange](image-url)

Figure 4: Emittance exchange. LEFT: Wedge Absorber Technique. RIGHT: Homogeneous Absorber Technique.

Gas-filled Helical Cooling Channel (HCC)

The HCC is an attractive example of a cooling channel based on this idea of energy loss dependence on path length in a continuous absorber. One version of the HCC...
uses a series of high-gradient RF cavities filled with dense hydrogen gas, where the cavities are in a magnetic channel composed of a solenoidal field with superimposed helical transverse dipole and quadrupole fields [13]. In this scheme, energy loss, RF energy regeneration, emittance exchange, and longitudinal and transverse cooling happen simultaneously.

The helical dipole magnet creates an outward radial force due to the longitudinal momentum of the particle while the solenoidal magnet creates an inward radial force due to the transverse momentum of the particle, or

\[F_{\text{dipole}} \approx p \times B; \quad b \equiv B_z \]

\[F_{\text{solenoid}} = -p \times B_z; \quad B = B_z, \]

where \(B \) is the field of the solenoid, the axis of which defines the \(z \) axis, and \(b \) is the field of the transverse helical dipole at the particle position. By moving to the rotating frame of the helical fields, a time and \(z \)-independent Hamiltonian can be formed to derive the beam stability and cooling behavior [14].

Use of a continuous homogeneous absorber as shown on the right side of figure 4, rather than wedges at discrete points, implies a positive dispersion along the entire cooling path, a condition that has been shown to exist for an appropriately designed helical dipole channel. We have also shown that this condition is compatible with stable periodic orbits. The simple idea that emittance exchange can occur in a practical homogeneous absorber without shaped edges followed from the observation that RF cavities pressurized with a low \(Z \) gas are possible [15,16].

The analytic relationships derived from this analysis were used to guide simulations using a code developed based on the GEANT4 [17] program called G4Beamline [18] and also using ICOOL [19] developed at BNL.

Simulation results [10] show cooling factors or 50,000 for a series of four 250 MeV/c HCC segments, where the magnet diameters are decreased and fields are increased as the beam cools. In this example the final field would be 17 T with a hydrogen gas pressure of 400 atmospheres.

Momentum-dependent HCC

While the HCC described above operates at constant energy, another set of applications follows from HCC designs where the strengths of the fields are allowed to change with the muon momentum. The first example was a 6D precooler, where the beam is slowed in a liquid hydrogen absorber at the end of the pion decay channel, with 6D emittance reduction by a factor of 6. Another example is a stopping muon beam based on a HCC [20].

Parametric Resonance Ionization Cooling

Parametric-resonance Ionization Cooling (PIC) [21], requires a half integer resonance to be induced in a ring or beam line such that the normal elliptical motion of particles in \(x - x' \) phase space becomes hyperbolic, with particles moving to smaller \(x \) and larger \(x' \) as they pass down the beam line. (This is almost identical to the technique used for half integer extraction from a synchrotron where the hyperbolic trajectories go to small \(x' \) and larger \(x \) to pass the wires of an extraction septum.) Thin absorbers placed at the focal points of the channel then cool the angular divergence of the beam by the usual ionization cooling mechanism, where each absorber is followed by RF cavities. Thus in PIC the phase space area is reduced in \(x \) due to the dynamics of the parametric resonance and \(x' \) is reduced or constrained by ionization cooling. The basic theory of PIC is being developed to include aberrations and higher order effects [22]. Simulations using a channel based on the HCC concept are now underway [23].

PHASE SPACE REPARTITIONS

Reverse emittance exchange using absorbers

A muon beam that is well cooled at one or two hundred MeV/c will have its unnormalized longitudinal emittance reduced by a factor of a thousand or more at 100 or more GeV collider energy. At the interaction point in the collider the bunch length would then be much shorter than the IR focal length. In reverse emittance exchange (REMEX), we propose to repartition the emittances to lengthen each bunch and narrow the transverse emittances using beryllium wedge energy absorbers.

Calculations show that two stages of reverse emittance exchange, one at low energy and one at a higher energy before energy straggling becomes significant, can reduce each transverse emittance by an order of magnitude.

Muon Bunch Coalescing

One of the newest ideas is to cool less intense bunches at low energy and to recombine them into intense bunches at higher energy where wake fields, beam loading, and space charge tune shifts are less problematic [24].

Beryllium Wedges

Both PIC and REMEX techniques involve the focusing of a beam onto an energy absorber for which beryllium is better suited than the lower-\(Z \) materials shown in figure 2. First, the higher density of beryllium allows the thickness of the absorber to be a smaller fraction of a betatron wavelength and thereby more effective since the average betatron function in the region of the absorber is closer to the minimum value. Second, the energy straggling in the absorbers leads to longitudinal heating that must be controlled by emittance exchange. Thus the absorbers should be thin wedges made of beryllium which can easily be refrigerated to handle the heat deposition of the bright beams required by a muon collider.

NEW COOLING TECHNOLOGY

Pressurized RF Cavities

A gaseous energy absorber enables an entirely new technology to generate high accelerating gradients for muons by using the high-pressure region of the Paschen
This idea of filling RF cavities with gas is new for particle accelerators and is only possible for muons because they do not scatter as do strongly interacting protons or shower as do less-massive electrons. Measurements by Muons, Inc. and IIT at Fermilab have demonstrated that hydrogen gas suppresses RF breakdown very well, about a factor six better than helium at the same temperature and pressure. Consequently, much more gradient is possible in a hydrogen-filled RF cavity than is needed to overcome the ionization energy loss, provided one can supply the required RF power. Hydrogen is also twice as good as helium in ionization cooling effectiveness, viscosity, and heat capacity. Present research efforts include tests of materials in pressurized RF CAVities in magnetic fields [26] as shown in figure 5, where an external field causes no apparent reduction in maximum achievable gradient. Crucial beam tests of the concept are scheduled in 2008.

High-pressure RF cavities near the pion production target can be used to simultaneously capture, bunch rotate, and cool the muon beam as it emerges from the decaying pions [27]. We have started an R & D effort to develop RF cavities that will operate in the extreme conditions near a production target and an effort to simulate the simultaneous capture, phase rotation, and cooling of muons as they are created from pion decay.

High Temperature Superconductor

Magnets made with high-temperature superconducting (HTS) coils operating at low temperatures have the potential to produce extremely high fields for use in accelerators and beam lines. The specific application of interest is to use a very high field (greater than 30 Tesla) solenoid to provide a very small beta region for the final stages of cooling for a muon collider. With the commercial availability of HTS conductor based on BSCCO or YBCO technology with high current carrying capacity at 4.2 K, very high field solenoid magnets should be possible. We are evaluating the technical issues associated with building this magnet [28,29]. In particular we are addressing how to mitigate the high Lorentz stresses associated with this high field magnet.

Helical Solenoid

The original concept of the HCC involved a rather complex magnet with separate coils to provide the required solenoidal, helical dipole, and helical quadrupole fields. Figure 6 shows a new design [30] called a Helical Solenoid (HS) which uses simple offset coils to generate the three required components.

Muon Cooling Demonstration Experiments

The MICE project, designed primarily to develop transverse cooling to reduce neutrino factory cost, is described in several papers at this meeting. Figure 7 shows MANX, a 6D muon cooling demonstration experiment based on a HCC with variable field strengths. It is being designed to slow a 300 MeV/c muon beam to about 150 MeV/c in a HCC filled with liquid helium [31].
COLLIDER POSSIBILITIES

Figure 8 shows an artist’s conception of a 5 TeV center of mass muon collider on the Fermilab site. Such a machine would have a physics reach almost 3 times higher than the LHC with the capability to know the initial particle momenta with great precision. The artist has taken some liberties in that there should be long straight sections in the collider to make the small low beta regions for optimum luminosity. But the arc size is realistic in that 10 T magnets with 80% packing factor can be used for the 2.5 TeV/c beams. Also not seen is the depth of the machine, which should be more than 300 m to mitigate the radiation caused by the muon decay neutrinos exiting and interacting with the surface of the Earth.

There are many problems to solve to come up with a realistic plan for an energy frontier collider. Progress has been made, primarily in demonstrating existence proofs for the critical questions of muon production, capture, and cooling in simulations based on idealistic models. For these aspects of the collider, an important next step is to show the required performance can be achieved with realistic designs that include serious engineering.

In parallel with the work on cooling and acceleration that has been described in the papers presented at this meeting, another effort is underway to revive the collider studies that were made more than ten years ago that include the ring itself, the interaction region, and the experimental detectors.

Project X, the first name for a high-intensity 8 GeV proton driver Linac at Fermilab, will allow muons to be produced at a rate consistent with a high luminosity collider. Stopping muon beams for experiments such as the mu2e search can be improved by muon cooling as can neutrino factories based on muon storage rings. These projects can be affordable intermediate steps to a collider.

CONCLUSIONS

New 6D muon cooling ideas described above and a new enthusiasm to build an energy frontier lepton collider to follow the LHC are creating an exciting environment for muon collider research. High-pressure RF experiments are underway, with encouraging results. A 6D HCC demonstration experiment is being designed and plans for 1.5 TeV and higher center of mass muon colliders are being studied at Fermilab.

Starting the construction of an energy frontier muon collider with center of mass energy more than 3 TeV and an average luminosity of more than $10^{32} \text{cm}^{-2}\text{s}^{-1}$ in the next decade seems to be an achievable goal. If enough people understand this and are inspired to contribute, it will become a self-fulfilling prophecy.

REFERENCES

[4] M. Popovic et al., Linaac06
[10] K. Yonehara et al., EPAC06
[13] V. Kashikhin et al., WEPD015, this conf.
[16] M. BastaniNejad et al., MOPP080, this conf.
[18] T. J. Roberts et al., WEPP120, this conf.
[21] Yaroslav Derbenev et al., COOL05
[22] Y. Derbenev et al., WEP149, this conf.
[23] A. Afanasev et al., WEP147, this conf.
[26] P. Hanlet et al., EPAC06
[27] D. Neuffer et al., Use of Gas-filled Cavities in Muon Capture, THPMN106, PAC07
[28] S. A. Kahn et al., WEPD022, this conf.
[29] J. Schwartz et al., WEPD023, this conf.
[30] V. Kashikhin et al., WEPD013 and WEPD014, this conf.
[31] K. Yonehara et al., WEP153, this conf.