Use of Microbeam at JAEA Takasaki

Mitsuhiro FUKUDA

Research Center for Nuclear Physics (RCNP)
Osaka University
Authors

Takasaki Advanced Radiation Research Institute
Japan Atomic Energy Agency
Tomihiro Kamiya, Masakazu Oikawa, Takahiro Satoh, Takuro Sakai, Satoshi Kurashima, Nobumasa Miyawaki, Susumu Okumura, Hirotsugu Kashiwagi, Watalu Yokota

Research Center for Nuclear Physics (RCNP)
Osaka University
Mitsuhiro Fukuda, Kichiji Hatanaka, Tetsuhiko Yorita
Contents

1. Microbeam Production Systems at TIARA Facility
2. Applications of the Microbeams
3. Development of a New High-Energy Heavy Ion Microbeam System
4. Generation of High Quality Beams by Upgrading Cyclotrons
5. Summary
1. Microbeam Production Systems at **TIARA** Facility

Takasaki Ion accelerators for Advanced Radiation Application

- **3MV Tandem Accelerator**
- **400kV Ion Implanter**
- **3MV Single-ended Accelerator**
- **K110 Cyclotron**

![Energy vs. Mass Number Graph]

- **AVF Cyclotron**
- **Tandem Accelerator**
- **Ion Implanter**
- **Several-MeV Light Ion Microbeam**
- **Several-Dozen-MeV Heavy Ion Microbeam**
- **Several-Hundred-MeV Heavy Ion Microbeam and Single-Ion Hit**
Production of Microbeam

- Primary beam
- Object slits
- Divergence-defining slits
- Quadrupole lenses
- Focal plane

Microbeam line

Heavy Ion Microbeam Line
- Several-dozen MeV

Light Ion Microbeam Line
- Several MeV
Spot Size of Light Ion Microbeam

Secondary electron mapping to measure the beam spot size

SEM (Scanning Electron Microscope) image of a silicon relief pattern

Scanning the microbeam

Intensity of Secondary Electrons

0.25 μm

0 0.4 0.8 1.2
Horizontal Position (μm)
2. Applications of the Microbeams

In-air Micro-PIXE Analysis Using 2 MeV Proton Microbeam

- Measurement System
 - In vacuum: X-ray detector for PIXE
 - In air: Microbeam, X-ray detector for PIXE, γ-ray detector for PIGE, Beam Scanner

- Cell: 2 dimensional distribution of elements in cattle blood vessel cell, 20μm x 20μm

- Tooth: Distribution of fluorine and calcium in tooth

Dental Sample

Graph: F Concentration (10^-6 ppm) vs. Position (μm)
Application of several-hundred-MeV heavy ion Microbeam

Beam spot size: $5 \sim 10 \mu m$

Single-ion hit rate: several hits/min

Elucidation of Cellular Radiation Response

- Investigation of cell-to-cell communications such as “bystander effects”
- Analysis of cellular spatial sensitivity, interaction of damages, dynamics of cellular repair and intra-cellular process like apoptosis
3. Development of a New High-Energy Heavy Ion Microbeam System

Several-hundred-MeV heavy ion beam ($\Delta E/E < 0.02\%$)
Preliminary Result

Observation of beam spot on a plastic scintillator

Fluorescence of beam spot

10 mm

Observation of beam spot on a plastic scintillator

High speed single-ion hit with targeting accuracy less than 1 μm

Several-hundred-MeV heavy ions applied to Mammalian cell

Cytoplasm

5~10 μm

Nucleus

Beam spot size

about 0.7 μm in diameter (achieved)

Single-ion hit rate

more than 600 hits / min (under development)
4. Generation of High Quality Beams by Upgrading Cyclotrons

Upgrade of AVF Cyclotron

- Flattop Acceleration System
 Energy Spread $\Delta E/E = 0.01 \sim 0.05 \%$

- Temperature Control System
 Magnetic Field Stability : $\Delta B/B < 0.001\%$

TIARA Cyclotron Facility

Microbeam Applications

Materials, Medical, Biological Sciences

RCNP Cyclotron Facility

Ultrahigh Resolution Experiment

Nuclear Physics
Development of Flattop Acceleration System

Superimposing the fifth harmonic voltage on the fundamental one

<table>
<thead>
<tr>
<th>Phase (degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-360</td>
</tr>
</tbody>
</table>

Relative Amplitude

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 -0.25 0 0.25 0.5 1 1.5

Fundamental
Fifth harmonics

Pickup signal of V1+V5

-0.2 V

17.4 MHz
Single Turn Extraction

Ordinary Acceleration

Turn pattern before extraction

- Beam Current (μA)
- Probe Position (mm)
- $V_1 = 36.502$ kV
- $V_5 = 0.0$ kV

Multiturn extraction

Beam bunch for single-pulse injection

Flattop Acceleration

- Beam Current (nA)
- Probe Position (mm)
- $V_1 = 32.7$ kV
- $V_5 = 1.2$ kV

260 MeV $^{20}\text{Ne}^7+$
@ JAEA AVF Cyclotron

Single turn extraction

Beam bunch for single-pulse injection
Temperature increase caused by heat from coils: $\Delta t_{\text{yoke}} \approx 5$ °C

Magnetic field stability: $\Delta B/B \approx 3 \times 10^{-4}$

- Insertion of water cooled plate for heat shielding
 $\Delta t_{\text{yoke}} \approx 0.1$ °C
- Stabilization of cooling water temperature for coils
 $\Delta t_{\text{coolant}} \approx 0.5$ °C

$\Delta B/B \approx 1 \times 10^{-5}$
High Quality Beam at RCNP Cyclotron Facility

Energy Resolution
$\Delta E/E \sim 0.005\%$

Ring Cyclotron
$K=400$ MeV
$\Delta E/E \sim 0.01\%$
Since 1992

Stability of Magnetic Field
$\Delta B/B < 0.001\%$

Upgraded recently

Grand Raiden

AVF Cyclotron
$K=140$ MeV
$\Delta E/E < 0.1\%$
Since 1973
Ultrahigh Energy Resolution Experiment Using the High Quality Beam

Lateral and Angular dispersion matching between WS-beam line and Grand RAIDEN

Ultrahigh resolution of $\Delta E = 12.8$ keV

World record!!

Ordinary resolution (p,n) measurement

Ultrahigh resolution $(^3\text{He},t)$ measurement

Comparison of resolutions

$$\Delta E = 12.8\text{ keV}$$

RCNP 2001

$^{58}\text{Ni}(^3\text{He},t)$

$E = 140$ MeV/u

$\Delta E = 35$ keV

$IUCF$

Ordinary resolution (p,n) measurement

RCNP

$IUCF$
5. Summary

Microbeams available at TIARA, JAEA Takasaki

<table>
<thead>
<tr>
<th>Microbeam</th>
<th>Accelerator</th>
<th>$\Delta E/E$</th>
<th>Ion</th>
<th>Spot size</th>
<th>Applications</th>
</tr>
</thead>
</table>
| Light ion | 3MV Single-ended | 10^{-5} | 2~3 MeV H, He | 0.25 μm | - Micro-PIXE analysis
 | | | | | - PBW (Proton Beam Writing) | |
| Heavy ion | 3MV Tandem | 10^{-4} | H ~ Au | <1 μm | - Analysis of single event phenomena in semiconductor devices |
| High-Energy Heavy-ion | K110 AVF Cyclotron | $>10^{-3}$ (original) | H ~ Xe | 5 ~ 10 μm (Collimation) | - Elucidation of Irradiation effects to living cells |
| | | 10^{-4} (new) | 260 MeV Ne | < 1 μm (Focussing) | |