Effect of Heat Treatment Temperature on the Thermal Conductivity of Large Grain Superconducting Niobium

S.K. Chandrasekaran1, T.R. Bieler2, C.C. Compton3, N.T. Wright1

1Department of Mechanical Engineering
Michigan State University

2Department of Chemical Engineering and Materials Science
Michigan State University

3Facility for Rare Isotope Beams
Michigan State University

15th International Conference on RF Superconductivity
The heat needs to be dissipated into surrounding liquid helium to maintain the bulk temperature below T_c

- Imperfections in the Nb surface result in local heating
Conduction in Nb at 2 – 4.2 K is a function of

- purity
- imperfection density
- grain size
- grain orientation?
Motivation for this study

- Need to relate thermal conductivity k with
 - metallurgy
 - e.g., grain size, grain orientation, purity
 - processing history
 - e.g., deformation, heat treatments

- Doing so
 - Allows prediction of thermal response of final device
 - k can be used as a diagnostic tool
 - e.g., imperfection density, purity
Motivation for this study

- Need to relate thermal conductivity k with
 - metallurgy
 - e.g., grain size, grain orientation, purity
 - processing history
 - e.g., deformation, heat treatments

- Doing so
 - Allows prediction of thermal response of final device
 - k can be used as a diagnostic tool
 - e.g., imperfection density, purity
Model for k

$$k(T) = R(y) \left[\frac{\rho_{295}}{LRRR T} + aT^2 \right]^{-1} + \left[\frac{1}{D e^{-y} T^2} + \frac{1}{B \lambda T^3} \right]^{-1}$$

- ρ_{295} – electrical resistivity at 295 K
- L – Lorentz constant
- RRR – ratio of electrical resistivity at 295 K to that at 4 K
- a – coefficient of momentum exchange with lattice
- D – quantifies phonon scattering by electrons
- B – value from Casimir for scattering at crystal boundaries
- λ – phonon mean free length
- $y \approx \alpha T_c / T$

Parameters to be estimated

\[k(T) = R(y) \left[\frac{\rho_{295}}{LRRR} T + aT^2 \right]^{-1} + \left[\frac{1}{De^{-y} T^2} + \frac{1}{B\lambda T^3} \right]^{-1} \]

\[\Downarrow \]

\[k(T) = R(y) \left[\frac{\beta_1}{T} + \beta_2 T^2 \right]^{-1} + \left[\frac{\beta_3}{e^{-y} T^2} + \frac{\beta_4}{T^3} \right]^{-1} \]

and

\[y \approx \alpha \frac{T_c}{T} \]

\[\Downarrow \]

\[y \approx \beta_5 \frac{T_c}{T} \]
Specimen History: Set 1 – Different ingots

- Large grain specimens
- Unstrained specimens

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Est. RRR</th>
<th>Ta content (ppm)</th>
<th>First heating</th>
<th>Second heating</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>T_h ($^\circ$C)</td>
<td>t (hrs.)</td>
</tr>
<tr>
<td>1</td>
<td>191</td>
<td>1275</td>
<td>600</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>131</td>
<td>668</td>
<td>600</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>190</td>
<td>756</td>
<td>750</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>196</td>
<td>756</td>
<td>750</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>104</td>
<td>1322</td>
<td>800</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>143</td>
<td>523</td>
<td>800</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>174</td>
<td>1375</td>
<td>140</td>
<td>48</td>
</tr>
<tr>
<td>8</td>
<td>200</td>
<td>704</td>
<td>140</td>
<td>48</td>
</tr>
</tbody>
</table>
Thermal conductivity: \(T_h = 140 \, ^\circ\text{C} - 800 \, ^\circ\text{C} \)

- \(k_{pp} \) dependent on heat treatment temperature
- 140 \(^\circ\text{C}, 48\) hrs.: no change in bulk
Thermal conductivity: $T_h = 1100 \, ^\circ C$

- k_{pp} shows dependence on RRR
- k for all specimens: too many variables
Specimen History: Set 2 – Same ingot disc

- Reduce extraneous factors affecting k
- Specimens cut from one grain, same orientation w.r.t. heat flow
- Unstrained specimens

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Est. RRR</th>
<th>Ta content (ppm)</th>
<th>First heating</th>
<th>Second heating</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>T_h (°C)</td>
<td>T_h (°C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>t (hrs.)</td>
<td>t (hrs.)</td>
</tr>
<tr>
<td>9</td>
<td>146</td>
<td>1357</td>
<td>600</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>143</td>
<td>1357</td>
<td>800</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>151</td>
<td>1357</td>
<td>1000</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>141</td>
<td>1357</td>
<td>1200</td>
<td>-</td>
</tr>
</tbody>
</table>
No change in k after 600 °C, 2 hrs.

Similar k_{pp} for 1000 °C & 1200 °C
Sigmoidal dependence on temperature
Plateau above 1000 °C?
1100 °C, 4 hrs. data supports plateau

All data from unstrained LG Nb
Lower β_4 with increasing heat treatment temperature

Asymptotic convergence
Local average misorientation

- Dislocation recovery at the surface
- 0.005° bins used
Conclusions

- 140 °C, 48 hrs.; 600 °C, 2 hrs.: no change in k
- k_{pp} shows dependence on RRR
- k_{pp}/k_3 shows sigmoidal dependence on T_h
- Possible plateau in k_{pp}/k_3 for $T > 1000$ °C
 - For unstrained LG Nb
- Rate constants may be estimated from Set 2
- $T < 1000$ °C, longer t could reproduce max. k_{pp}/k_3
 - Economically beneficial
Acknowledgements

Funding

- U.S. Department of Energy, Office of High Energy Physics (Grant No. DE-S0004222)

Ingots Nb discs

- Dr. G.R. Myneni, Jefferson Laboratory

Collaborators

- Di Kang, Michigan State University
- Dr. J.V. Beck, Michigan State University (Retired)

Technical support

- SRF dept., FRIB, MSU
- Cryogenics dept., NSCL/FRIB, MSU
From our group:

- D. Kang, *et. al.*, THPO067 – Characterization of Large grain Nb
- A. Mapar, *et. al.*, THPO068 – Hydroforming modelling