Magnesium Diboride Films for SRF Cavity Applications

Y. D. Agassi
Naval Surface Warfare Center, Carderock Division, Bethesda MD

D. E. Oates
MIT Lincoln Laboratory, Lexington MA

B. H. Moeckly
STI, Inc., Santa Barbara CA

Sponsor: Office of Naval Research

(SRF2011, CHICAGO, JULY ‘11)
I. Introduction and Approach:

The Need to Go Beyond Bulk-Nb Cavities

The T > 4 K Approach: MgB$_2$/\{Cu, Nb\} Films; Thickness $\sim 2\lambda$

Properties, Potential Payoffs, Challenges

II. The Case for MgB$_2$:

Reactive Evaporation

High-quality Thin-film Deposition

$R_s(T, H)$ Data

Power Dependence (Low, High)

Film Passivation

Film stability

System Simulations

Thermal Management

► Energy Gap

Data (IMD, $\lambda(T < 5K)$) and Theory of π Energy-Gap Symmetry

III. Summary, Outlook
The T > 4 K Approach: MgB$_2$ Films of Thickness O(2λ)

- **New** Superconductor (2001); $T_C = 39.5$ K. Advantage: $5K \leq T_{\text{OPERATION}} \leq 20$ K

- **Payoffs:**
 - **Simplified Cryogenics:** Gaseous He vs. Liquid He for Nb
 - **Reduction** in Size, Weight, Power (SWP)
 - **Enhanced Reliability**

INPUT POWER vs. T_{OPER} FOR 1 WATT CRYOCOOLER

Prime Power: MgB$_2$ vs. Nb

- 10 PERCENT CARNOT
- 3 PERCENT CARNOT
- 1 PERCENT CARNOT
- 1 WATT CRYOCOOLERS

REF: AES, Inc. '06
The MgB₂ Alternative

Nb vs. MgB₂ Material Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Nb (Type I/II)</th>
<th>MgB₂ (Type II)</th>
<th>Implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical Fields (T=0K) (Tesla)</td>
<td>Hₐ = 0.2</td>
<td>Hₐ > 1.55 (.16x15.)^(1/2)</td>
<td>● Potential for High Gradient</td>
</tr>
</tbody>
</table>
| Operating Temperature (K) | 2 | 5-20 | ● **Payoffs:**
| | | | Big Cost, SWP Savings |
| | | | ● Enhanced Reliability |
| ξₑₑ(T=0) (nm) (Coherence Length) | 38 | ~ 4 - 8 | ● Polycrystalline Films: OK |
| Oxide Structure | Many Oxides | Only MgO Only B₂O₃ | ● Reduced Potential for Corrosion |
| | Some are Magnetic | Only B₂O₃ | |
| Crystal Structure | BCC | AIB₂ (Hexagonal) | ● **Stable, Simple** |
| Classification | Single Element Metal | Two Elements Ceramic | ● **Challenge:**
| | | | Quality SRF Cavity Coating |
I. Introduction And Approach:

The Need to Go Beyond Bulk-Nb Cavities

The T > 4 K Approach: MgB$_2$/\{Cu, Nb\} Films; Thickness \sim2λ

Properties, Potential Payoffs, Challenges

II. The Case for MgB$_2$:

- Reactive Evaporation
- $R_s(t, H)$ Data
- Film Passivation
- System Simulations
- Energy Gap

High-quality Thin-film Deposition
Power Dependence (Low, High)
Film stability
Thermal Management

Data (IMD, $\lambda(T < 5K)$) and Theory of π-Gap Symmetry

III. Summary, Outlook
Film Deposition: Reactive Evaporation

Solves MgB$_2$ Film-growth Difficulties: Mg Volatility, Oxidation

Advantages:
- Localized source of high-pressure Mg vapor
- Mg and substrate temperatures: Different

Films:
- $T_C \cong 39K$, $\Delta T_C \cong 1K$, Resistivity(T_C) $\cong 2\mu\Omega$
- 2” Wafers
- RMS roughness = 4.4 nm

Low Power $R_S(T)$
MgB$_2$ vs. Nb Films

- R_S(MgB$_2$; T) < R_S(Nb; T) for T > 2 K
- R_S(MgB$_2$ /Nb (Polished)): Comparable to MgB$_2$ /Sapphire

 Nb-Bulk: R_S (2K, $f = 2.2$GHz) $\sim R_{\text{RESIDUAL}}$ (2K) $\sim 10^{-2}$ $\mu\Omega$

- T_c(Nb) = 9.2 K, T_c(MgB$_2$) = 39 K
Higher Power $R_s(T)$
MgB$_2$/(Nb, Sapphire)

- R_s(NL Onset)/Sapp. at $H \sim 800$ Oe ($\Leftrightarrow E_{ACC} \sim 20$ MV/m): Material Limited?
- R_s(NL Onset)/Nb at $H > 200$ Oe Flat!
- Sample Variability

Passivation
Success at Film-Stabilization

- MgB_2 Degrades in Air
- Passivation with 5 X (2.5 nm Al_2O_3 and 2.5 nm ZrO_2) by ALD
- Over 6 Months & 5 Temperature Cycles R_s Unchanged. $Q (f = 1. \text{ GHz}) \sim 1. \times 10^8$
 (Measured in a 2” Dielectric Resonator.)

![Diagram showing passivation layers and measurement results]

$Q = 9.59 \times 10^6$
$R_S = 2.3 \times 10^{-5}$

at 10.76 GHz

$R_S(1 \text{ GHz}) = 2 \times 10^{-7} \Omega$
System Simulations
Thermal Management, Power (AES, Inc.)

- Based on Our R_S Data \Rightarrow Simulations Confirmed Feasibility

Two Thermal-management Issues:

1. Gaseous He Cooling: MgB$_2$/Cu Five-Cavity Array
2. Resonance-Frequency Shift: Due to Thermal Expansion

Worst Case Scenario

$\text{He}(T, P) = (30\text{K}, 3 \text{ Atm})$

(Q = $0.608E9$ $f = 703.75 \text{ MHz}$)

- Cooling Load: Not a Problem
- Thermal Expansion: Relatively Small

Feasible

REF: AES, Inc.
Energy-Gap (π-Gap) Symmetry

● YBCO Work \Rightarrow IMD-Power: Nonlinear Probe of Energy-Gap Symmetry
● Surprise: Low-T IMD-power Upturn: Inconsistent with s-wave π-Gap

$$P_{S\text{-WAVE}} (T) \propto T^{-5} e^{-2\Delta/(k_B T)}$$

$$\Delta_\pi (T, \varphi) = \Delta_0 (T) \sin (6 \varphi)$$

$$P_{IMD} (T) \propto T^{-2}$$

● Impact of π-Gap $\ell=6$ Symmetry: Surface-Resistance Variation, NL, at Low-T

$$R_S (BCS) \propto \frac{1}{T} e^{-\Delta/(k_B T)} \iff R_S (\ell = 6) \propto T$$

Accomplishments

- **Materials Science (Reactive Evaporation Deposition):**
 - High-quality, Flat, Ultra Smooth MgB₂/Sapphire, MgB₂/Nb Films
 - Passivation Success with ZrO-AIO Coating

- **Data/Characterization and Analysis:**

 \(R_S \) Database: at Low, High Power of Flat MgB2/(SAPPHIRE, Nb) Films

\[
E_{\text{ACC}}: \begin{align*}
&\text{CURRENT RECORD} \sim 20\text{MV/m} \\
&\text{LIKELY that } E_{\text{ACC}} \text{ IS HIGHER}
\end{align*}
\]

Thermal Management Simulation \(\Rightarrow \) OK
\(\pi \) Energy-Gap \(\ell=6 \) Symmetry: Data and Theory

- **Outlook:**

 The 2-\(\lambda \) Thick MgB-Coated Cavity Proposition: Promising
Future Challenges

High-Quality Film **Deposition on Curved Metallic Surfaces**

Demonstrating **Low R_s** in those films

Demonstrating a **High Field Gradient** in those Films

Theory

Make a MgB$_2$-based RF Cavity with High Field Gradient
End Presentation