Preliminary study of proton Beam Transport in a 10 MeV Dielectric Wall Wall Accelerator

Jun Zhu

Accelerator Physics and Application Laboratory
Institute of Fluid Physics, CAEP

The 26th Linear Accelerator Conference
Tel Aviv, Israel
September 9-14, 2012
Dielectric wall accelerator

- Dielectric wall accelerator (DWA) originated from the linear induction accelerator (DARHT, Dragon), which is based on the pulsed power technology.
- Concept of the modern DWA is proposed by G.J. Caporaso. The accelerating gradient of a proton DWA is expected to be 100 MV/m.
- Virtual traveling wave mode for any charged particle.
Dielectric wall accelerator (DWA) originated from the linear induction accelerator (DARHT, Dragon), which is based on the pulsed power technology.

Concept of the modern DWA is proposed by G.J. Caporaso. The accelerating gradient of a proton DWA is expected to be 100 MV/m.

Virtual traveling wave mode for any charged particle.
Dielectric wall accelerator

- Dielectric wall accelerator (DWA) originated from the linear induction accelerator (DARHT, Dragon), which is based on the pulsed power technology.
- Concept of the modern DWA is proposed by G.J. Caporaso. The accelerating gradient of a proton DWA is expected to be 100 MV/m.
- Virtual traveling wave mode for any charged particle.

Diagram:

- HGI tube
- Stacked solid-state pulse forming line
Dielectric wall accelerator

- Dielectric wall accelerator (DWA) originated from the linear induction accelerator (DARHT, Dragon), which is based on the pulsed power technology.
- Concept of the modern DWA is proposed by G.J. Caporaso. The accelerating gradient of a proton DWA is expected to be 100 MV/m.
- Virtual traveling wave mode for any charged particle.
Dielectric wall accelerator

- Dielectric wall accelerator (DWA) originated from the linear induction accelerator (DARHT, Dragon), which is based on the pulsed power technology.
- Concept of the modern DWA is proposed by G.J. Caporaso. The accelerating gradient of a proton DWA is expected to be 100 MV/m.
- Virtual traveling wave mode for any charged particle.
Dielectric wall accelerator

Dielectric wall accelerator (DWA) originated from the linear induction accelerator (DARHT, Dragon), which is based on the pulsed power technology.

Concept of the modern DWA is proposed by G.J. Caporaso. The accelerating gradient of a proton DWA is expected to be 100 MV/m.

Virtual traveling wave mode for any charged particle.
Dielectric wall accelerator

- Dielectric wall accelerator (DWA) originated from the linear induction accelerator (DARHT, Dragon), which is based on the pulsed power technology.
- Concept of the modern DWA is proposed by G.J. Caporaso. The accelerating gradient of a proton DWA is expected to be 100 MV/m.
- Virtual traveling wave mode for any charged particle.

[Diagram with labels: HGI tube, Stacked solid-state pulse forming line]
Dielectric wall accelerator

- Dielectric wall accelerator (DWA) originated from the linear induction accelerator (DARHT, Dragon), which is based on the pulsed power technology.
- Concept of the modern DWA is proposed by G.J. Caporaso. The accelerating gradient of a proton DWA is expected to be 100 MV/m.
- Virtual traveling wave mode for any charged particle.
Dielectric wall accelerator

- Dielectric wall accelerator (DWA) originated from the linear induction accelerator (DARHT, Dragon), which is based on the pulsed power technology.
- Concept of the modern DWA is proposed by G.J. Caporaso. The accelerating gradient of a proton DWA is expected to be 100 MV/m.
- Virtual traveling wave mode for any charged particle.
Dielectric wall accelerator

- Dielectric wall accelerator (DWA) originated from the linear induction accelerator (DARHT, Dragon), which is based on the pulsed power technology.
- Concept of the modern DWA is proposed by G.J. Caporaso. The accelerating gradient of a proton DWA is expected to be 100 MV/m.
- Virtual traveling wave mode for any charged particle.
Dielectric wall accelerator

- Dielectric wall accelerator (DWA) originated from the linear induction accelerator (DARHT, Dragon), which is based on the pulsed power technology.
- Concept of the modern DWA is proposed by G.J. Caporaso. The accelerating gradient of a proton DWA is expected to be 100 MV/m.
- Virtual traveling wave mode for any charged particle.
Dielectric wall accelerator

- Dielectric wall accelerator (DWA) originated from the linear induction accelerator (DARHT, Dragon), which is based on the pulsed power technology
- Concept of the modern DWA is proposed by G.J. Caporaso. The accelerating gradient of a proton DWA is expected to be 100 MV/m
- Virtual traveling wave mode for any charged particle
Dielectric wall accelerator

- Dielectric wall accelerator (DWA) originated from the linear induction accelerator (DARHT, Dragon), which is based on the pulsed power technology
- Concept of the modern DWA is proposed by G.J. Caporaso. The accelerating gradient of a proton DWA is expected to be 100 MV/m
- Virtual traveling wave mode for any charged particle
Dielectric wall accelerator

- Dielectric wall accelerator (DWA) originated from the linear induction accelerator (DARHT, Dragon), which is based on the pulsed power technology.

- Concept of the modern DWA is proposed by G.J. Caporaso. The accelerating gradient of a proton DWA is expected to be 100 MV/m.

- Virtual traveling wave mode for any charged particle.
Dielectric wall accelerator

Dielectric wall accelerator (DWA) originated from the linear induction accelerator (DARHT, Dragon), which is based on the pulsed power technology.

Concept of the modern DWA is proposed by G.J. Caporaso. The accelerating gradient of a proton DWA is expected to be 100 MV/m.

Virtual traveling wave mode for any charged particle.
Dielectric wall accelerator (DWA) originated from the linear induction accelerator (DARHT, Dragon), which is based on the pulsed power technology.

Concept of the modern DWA is proposed by G.J. Caporaso. The accelerating gradient of a proton DWA is expected to be 100 MV/m.

Virtual traveling wave mode for any charged particle.
Dielectric wall accelerator

- Dielectric wall accelerator (DWA) originated from the linear induction accelerator (DARHT, Dragon), which is based on the pulsed power technology.

- Concept of the modern DWA is proposed by G.J. Caporaso. The accelerating gradient of a proton DWA is expected to be 100 MV/m.

- Virtual traveling wave mode for any charged particle.
Dielectric wall accelerator

- Dielectric wall accelerator (DWA) originated from the linear induction accelerator (DARHT, Dragon), which is based on the pulsed power technology.
- Concept of the modern DWA is proposed by G.J. Caporaso. The accelerating gradient of a proton DWA is expected to be 100 MV/m.
- Virtual traveling wave mode for any charged particle.
Dielectric wall accelerator

- Dielectric wall accelerator (DWA) originated from the linear induction accelerator (DARHT, Dragon), which is based on the pulsed power technology.

- Concept of the modern DWA is proposed by G.J. Caporaso. The accelerating gradient of a proton DWA is expected to be 100 MV/m.

- Virtual traveling wave mode for any charged particle.
DWA for proton therapy

DWA is the next generation accelerator system for intense modulated proton therapy (IMPT).

- The spot size, dose and energy (70 ~ 250 MeV) of the bunch can be varied from shot-to-shot
- No gantry, the accelerator can be rotated (<3 m)
- No neutron production

Therapy system proposed by LLNL
A DWA system for IMPT should be not only short but also light enough (no external focusing element)

1 MeV (20 MV/m) → 10 MeV (25 MV/m)

Development of the ion source and LEBT is performed by Institute of Heavy Ion Physics, Peking University
A DWA system for IMPT should be not only short but also light enough (no external focusing element)

1 MeV (20 MV/m) → 10 MeV (25 MV/m)

Development of the ion source and LEBT is performed by Institute of Heavy Ion Physics, Peking University

DWA in CPAC (Y.J. Chen, RPIA2011)
Important DWA elements developed at IFP

Solid-state parallel-plate Blumlein

Simulation

Experiment
Important DWA elements developed at IFP

High gradient insulator (HGI)

High voltage breakdown mechanism of the HGI is still an open question

- Scaling law $\sim L^{-1/2}$
- Cathode triple junction initiated secondary electron avalanche
- Vacuum arcing
- Secondary electron emission from intermediate triple junction adjacent to the anode
Beam Injection

◆ Self-focusing of the bunch: accelerating field gradient at the entrance will provide a focusing force

◆ The envelops for injection beam of 40 keV, 20 mA were solved

◆ E_z increases linearly from 0 to 25 MV/m at a distance of 5 cm

Beams with low injection energy are over-focused

$$E_r = -\frac{r}{2} \frac{\partial E_z}{\partial z}$$

E_z

E_r
Beam Transport Simulation

- 2-D axisymmetric particle-in-cell simulation for 40 keV, 20 mA, 1ns bunch
- Increase the acceptance of the DWA since any beam loss inside the HGI tube may cause surface flashover
- Emittance growth and energy spread are all acceptable since the beam line is too short

Phase 1: r – focusing z – decompressing
Phase 2: ……
Phase 3: r – defocusing z - compressing
Longitudinally bunching

6×10^{11} protons/min for IMPT

100 MV/m corresponds to the accelerating pulse width of 1 ns (FWHM)

<table>
<thead>
<tr>
<th></th>
<th>Option 1</th>
<th>Option 2</th>
<th>Option 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetition rate (Hz)</td>
<td>10</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Bunch width (ns)</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Peak Current (mA)</td>
<td>800</td>
<td>160</td>
<td>320</td>
</tr>
</tbody>
</table>

- Longitudinally bunching is required
- Bunching by applying head-to-tail velocity tilt
Thank you for your attention!