Development of H-Mode Cavities for the FAIR Project

LINAC 2012
Tel Aviv, Israel
10th September 2012

G.Clemente, W. Barth, L. Groening, S. Mickat, B.Schlitt, W.Vinzenz
GSI, Darmstadt
U.Ratzinger, R. Brodhage, H. Podlech, F. Dziuba, R.Tiede, M.Bush
IAP, Goethe University, Frankfurt am Main
Outline

• H-Mode Cavities
 – TE modes
 – Physical Properties
 – Beam Dynamics
 – Shunt Impedance Charts

• Linac Upgrade @ GSI for FAIR
 – Proton LINAC
 – High Energy LINAC
 – Super Heavy Element cw LINAC
From Pillbox to IH-Mode DTL

TE11 Mode in a pillbox
H-Field Parallel to beam Axis
No E-Field component for acceleration

Insertion of stem and drift tube
Perpendicular to the axis

Axial component of E-Field generated!
Acceleration possible!
From Pillbox to CH-Mode DTL

Pillbox exited on TE_{21} Mode
Suited for higher frequency
Superconducting option possible
H-Mode DTL: RF Properties

The acceleration structure strongly modifies the E field distribution

Very High capacitive load

Capacitive Load: H-Mode vs E-Mode DTL

Capacitive Load and electric field concentrated mainly on the beam axis

H-Mode DTL profits significantly by a slim tube geometry
Beam Dynamics

- Separated function beam dynamics

KONUS

EQUUS

\[\Delta z_c = \Delta \phi_c \beta_s \lambda / 2\pi \]

APF

- Periodic Beam Dynamics with Slim Permanent Magnet

Proposed as replacement for the LANSCE Linac

Extremely tight tolerances \(T = 200 \text{ T/m} \)

Reduced beam aperture
IH-DTL Established as standard solution for Heavy Ion
CH-DTL Valid alternative to DTL for Proton Linac up to 100 AMeV
THE FAIR P-LINAC

Source: LEBT → RFQ → 3 CCH-DTL → 3 CH-DTL → to SIS18 → to Dump

Source	Beam Energy (MeV)	Beam Current (mA)	Beam Pulse (µs)	Repetition Rate (Hz)	Frequency (MHz)	Norm. Emittance at output (µm)	Momentum Spread	Beam Loading (peak) (MW)	RF Power (peak) (MW)	Klystron (3 MW Peak Power)	Solid State Amplifier (50 kW)	Total Length (RFQ + CH)	Cavity	Energy (MeV)	Gaps	L (m)
LEBT	95 keV	3 MeV	35 MeV	70 MeV	36	2.1 / 4.2	≤ ± 10⁻³	4.9	2.2	7	3	≈ 27 m	1	3 - 12	22	1.7
RFQ	3 MeV	35 - 70	36	4	325.224								2	12 - 24	27	2.7
3 CCH-DTL	35 MeV												3	24 - 37	32	4
3 CH-DTL													4	37 - 48	20	2.9
												5	48 - 59	21	3.1	
												6	59 - 70	21	3.4	

DTL Section consists in
- 3 Coupled CH DTL
- 3 Standard CH-DTL

Related poster: THPB034 L. Groening
The Coupled CH-DTL

At lower β

- KONUS requires shorter focusing period
- Very high Shunt impedance
- Commercial 3 MW Klystron available

Coupled structure at low beta!
FAIR Prototype

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gap</td>
<td>27 (13+14)</td>
</tr>
<tr>
<td>Energy Range</td>
<td>11.7-24.3 MeV</td>
</tr>
<tr>
<td>β</td>
<td>0.15-0.22</td>
</tr>
<tr>
<td>Q_0</td>
<td>15300</td>
</tr>
<tr>
<td>Length (m)</td>
<td>2.7</td>
</tr>
<tr>
<td>ZT^2</td>
<td>60</td>
</tr>
<tr>
<td>RF Losses</td>
<td>1.37</td>
</tr>
<tr>
<td>Beam Loading</td>
<td>882 kW (at 70 mA, required 35)</td>
</tr>
<tr>
<td>Total Power</td>
<td>1.810 - 2.25 MW (2.7 Available)</td>
</tr>
</tbody>
</table>
FAIR Prototype

- **Cavity tuned at:** \(325.16\) against \(325.224\) MHz of operation
 - \(\varepsilon_{\text{air}} = 1.005\) \(f \propto \varepsilon^{1/2}\)
 - Beam dynamics verified with measured voltages
Status

- Stainless Steel Stems ready!
- Stainless Steel Drift Tubes in production
- Copper plating performed in late 2012/ early 2013
- 3 MW Klystron delivered. Power Supply is expected for end 2012
- New GSI Test Bench ready for full power RF Test
FAIR PLINAC
Beam Dynamics, Brilliance analysis

Beam Envelope X-Z (mm)

Beam Axis (cm)

Beam Envelope Y-Z (mm)

Beam Axis (cm)

\[\varepsilon_{nx}, \varepsilon_{ny} \text{ (mm mrad)} \]

Beam Current within norm. emittance (mA)
UNILAC
Universal Linear Accelerator
UNILAC
Universal Linear Accelerator
UNILAC

Universal Linear Accelerator

- **MUCIS, MEVVA**
- **LEBT**
- **HSI (RFQ, IH1, IH2)**
- **36 MHz**
- **Gas Stripper**
- **108 MHz**
- **HLI (ECR, RFQ, IH)**
- **108 MHz**
- **Poststripper (Alvarez, Cav.)**
- **Foil Stripper**
- **TK**
- **to SIS 18**

4-Rod IH-RFQ

- 2.2 – 120 keV/u
- Built in 1999
- A/q \(\leq 65 \) (U\(^{4+}\))
- I (mA) = 0.25 A/q
UNILAC

Universal Linear Accelerator

- **MUCIS, MEVVA**
- **LEBT**
- **HSI** (RFQ, IH1, IH2)
- **36 MHz**
- **Gas Stripper**
- **108 MHz**
- **HLI** (ECR, RFQ, IH)
- **108 MHz**
- **Poststripper** (Alvarez, Cav.)
- **TK**
- **Foil Stripper**

- **4-Rod IH-RFQ**
- **2.2 – 120 keV/u**
- **Built in 1999**
- **A/q \(\leq 65 \) (\(\text{U}^{4+} \))**
- **I (mA) = 0.25 A/q**
UNILAC
Universal Linear Accelerator

4-Rod IH-RFQ
2.2 – 120 keV/u
Built in 1999
A/q ≤ 65 (U^{4+})
I (mA) = 0.25 A/q
UNILAC
Universal Linear Accelerator

IH 1 & IH 2
120–743 keV/u - 1.4 MeV/u
Built in 1999
I (mA) = 0.25 A/q
UNILAC
Universal Linear Accelerator

5 Alvarez Type DTL
1.4 – 11.4 MeV/u
Built in 1975
178 DC Quadrupole
A/q ≤ 8.5 (U^{28+})
Present Linac Limitations

• 40 years at high duty factor (25 %)
 • Massive Sparkovers
 • Beam induced surface defects
 • Vacuum leaks

• DC Quadrupoles
 • Limited flexibility for multi-beam operation
 • Ground faults of the coils
 • Heat dissipation problematic

• FAIR Requirements (High Intensity, low duty factor)
 • Too high for protons
 • Challenging for heavy ion
 • Not compatible with SHE program

Massive injector upgrade required!
Present UNILAC

36 MHz IH-DTL

108 MHz Alvarez DTL
UNILAC Upgrade

FAIR High Energy LINAC

36 MHz IH-DTL

108 MHz Alvarez DTL
STEP 1

- New HV Terminal and LEBT to achieve 20 mA for U^{28+} after the stripper
STEP 1

- New HV Terminal and LEBT to achieve 20 mA for $^{28+}$ U after the stripper

STEP 2

- Replacement of the 90 MV DTL with 6 IH-DTL to 11.4 AMeV
STEP 1
- New HV Terminal and LEBT to achieve 20 mA for $^{28+}$ after the stripper

STEP 2
- Replacement of the 90 MV DTL with 6 IH-DTL to 11.4 AMeV
STEP 1
• New HV Terminal and LEBT to achieve 20 mA for $^{28}_U$ after the stripper

STEP 2
• Replacement of the 90 MV DTL with 6 IH-DTL to 11.4 AMeV

Optional
• Enough free space in tunnel for future energy upgrade
UNILAC Upgrade

FAIR High Energy LINAC

36 MHz IH-DTL 108 MHz IH-DTL 325 CH-DTL

STEP 1
• New HV Terminal and LEBT to achieve 20 mA for U^{28+} after the stripper

STEP 2
• Replacement of the 90 MV DTL with 6 IH-DTL to 11.4 AMeV

Optional
• Enough free space in tunnel for future energy upgrade
STEP 1

- New HV Terminal and LEBT to achieve 20 mA for U^{28+} after the stripper

STEP 2

- Replacement of the 90 MV DTL with 6 IH-DTL to 11.4 AMeV

Optional

- Enough free space in tunnel for future energy upgrade

Design machine for Low Duty Factor
A cw LINAC is strongly requested from users in the SHE Program
At low energy, a cw LINAC made of multigap s.c. is the best solution

SUPERCONDUCTING CH-DTL

High estate gradient
Large energy gain/cavity
Less focusing elements

Related Oral Poster from H. Podlech on Thursday, THPB009 D. Maeder

Injector
108.4 MHz
1.4 AMeV
3.5 AMeV
7.3 AMeV

216.8 MHz
12 m

SHE120
Demonstrator

- **Stage 1: Upgrade of the existing HLI Injector**
 - A new 18GHz ECR ion source
 - A new CW 4-Rod RFQ
 - Status: under commissioning

- **Stage 2: Construction of the first cryogenic module**
 - First CH-DTL, 2 s.c. Solenoids, Cryostat
 - Status: cavity under construction, cryostat ordered

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gap</td>
<td>15</td>
</tr>
<tr>
<td>Gradient</td>
<td>5.1 MV/m</td>
</tr>
<tr>
<td>Length</td>
<td>0.69 m</td>
</tr>
<tr>
<td>Gap length</td>
<td>40.8 mm</td>
</tr>
<tr>
<td>Aperture</td>
<td>20 mm</td>
</tr>
<tr>
<td>Eff. Gap Voltage</td>
<td>225 kV</td>
</tr>
</tbody>
</table>

Related Oral Poster
THPB035 P. Gerhard

Related Poster:
TUPB074 W. Barth
SUPB071 F. Dziuba
SUPERCONDUCTING CH-DTL: General R&D at IAP Frankfurt

- 325 MHz, s.c. CH-DTL 5MV/m
 - 7 equidistant gaps @ 11.4 AMeV
 - Inclined stem to tune the end cell
 - slow/fast bellow tuner
 - Cavity under production!

Related Poster
TUPB071: M.Bush

Pulsed beam test planned behind the UNILAC
Summary

• **H-Mode cavities shows great potential in the low to medium β profile**
 - IH-DTL is established as standard solution for heavy ion
 - Innovative coupling scheme developed for lower betas
 - CH-DTL can become a valid alternative to classical E-Mode DTL

• **FAIR LINAC UPGRADE entirely based on IH-DTL and CH-DTL**
 - A new dedicated 70 MeV CH-DTL is under construction
 - A replacement of the 90 MV UNILAC DTL is under investigation
 - First s.c. 19 gaps CH-DTL built at IAP Frankfurt
 - A cw s.c. prototype LINAC under construction
 - A 325 MHz s.c. CH-DTL under construction.