STATUS OF THE EUROPEAN XFEL
CONSTRUCTING THE 17.5 GEV SUPERCONDUCTING LINEAR ACCELERATOR

Winfried Decking, DESY
for the European XFEL Accelerator Consortium
- Up to 17.5 GeV SC Linac, 27000 pulses per second
Up to 17.5 GeV SC Linac, 27000 pulses per second

Three moveable gap undulators for hard and soft X-rays
- Up to 17.5 GeV SC Linac, 27000 pulses per second
- Three moveable gap undulators for hard and soft X-rays
- Initially 6 equipped experiments
Built by 12 European Nations at DESY, Hamburg

Budget 1.150 MEuro incl. preparation and commissioning
<table>
<thead>
<tr>
<th>Quantity</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>electron energy</td>
<td>10.5/14/17.5 GeV</td>
</tr>
<tr>
<td>macro pulse repetition rate</td>
<td>10 Hz</td>
</tr>
<tr>
<td>RF pulse length (flat top)</td>
<td>600 μs</td>
</tr>
<tr>
<td>bunch repetition frequency within pulse</td>
<td>4.5 MHz</td>
</tr>
<tr>
<td>bunch charge</td>
<td>0.02 – 1 nC</td>
</tr>
<tr>
<td>electron bunch length after compression (FWHM)</td>
<td>2 – 180 fs</td>
</tr>
<tr>
<td>Slice emittance</td>
<td>0.4 - 1.0 mm mrad</td>
</tr>
<tr>
<td>beam power</td>
<td>500 kW</td>
</tr>
<tr>
<td># of modules</td>
<td>101</td>
</tr>
<tr>
<td>(containing eight 9-cell superconducting 1.3 GHz cavities)</td>
<td></td>
</tr>
<tr>
<td>accelerating gradient for 17.5 GeV</td>
<td>23.6 MV/m</td>
</tr>
<tr>
<td># of 10 MW multi-beam klystrons</td>
<td>27</td>
</tr>
<tr>
<td>average klystron power</td>
<td>5.2 MW</td>
</tr>
<tr>
<td>(for 0.03 mA beam current at 17.5 GeV)</td>
<td></td>
</tr>
<tr>
<td>photon wavelength</td>
<td>0.05 – 4 nm</td>
</tr>
</tbody>
</table>
Accelerator Consortium: 16 Institutes that construct the Accelerator ‘In-Kind’
Three construction sites

5.8 km tunnels

12000 m² surface area are buildings

150000 m³ of underground building volume
4 June 2012
Tunnel breakthrough
All tunneling finished
Accelerator Installation – Warm Beamlines
Detailed planning of needed infrastructure previous to tendering and installation

Installation has started in main linac tunnel Q1/2012

Planning diagram shows

- when, where and how long a task takes place
- which tasks can go on in parallel (or not)
European XFEL at a Glance

Experimental Hall
Photon Beam Lines
Beam Dumps
Undulators
Collimation
Linear Accelerator
Bunch Compressors
Injector

Schenefeld
Osdorfer Born
DESY-Bahrenfeld
- Gun development at PITZ, DESY Zeuthen
- New best values for emittance achieved
- XFEL gun cavity starts to be conditioned in autumn 2012
- 3.9 GHz accelerator module (for bunch length control), design finished, prototype cavities in test

TUPB020 Elmar Vogel (DESY)
Status of the European XFEL 3.9 GHz system

MOPB015 Igor Isaev (DESY)
Multipactor Discharge Simulation for the RF Photo Gun at PITZ
Collimation & Beam Distribution

- Collimation system for beam halo cleaning and emergency beam stop
- Transvers Intra-Bunch Feedback
- Flexible beam distribution system for quasi-simultaneous operation of two primary electron beam lines

XFEL Collimator
European XFEL – Undulators

- Series production of 90 undulators started
- Focusing quadrupoles manufactured and precision fiducialization
- Series production of intersection components started

THPB089 Iván Moya (CIEMAT)
Magnetic Characterization of the First Phase Shifter Prototypes Built by CIEMAT for E-XFEL
Beam Dumps

- **bunch compressor diagnostic dumps**
 - 0.5 and 2.5 GeV
 - small fraction of max. beam power
 - $P_{ave} = 12$ kW
 - max. beam power

- **injector dumps**
 - 130 MeV
 - $P_{ave} = 12$ kW
 - max. beam power

- **main beam dumps**
 - $P_{ave} = 300$ kW
 - 1/2 max beam power
Cavity Material Supply

- Nb sheets and supplementing material purchased by DESY through 4 pre-qualified vendors
- Pressure Equipment Directive: Qualification of material, certification of QM, supervision of production through notified body (TUEV Nord)
- Quality inspection of all semi-finished parts at DESY prior to shipment to companies
 - eddy current scanning
 - tactile 3d measurements
- 70% - 100% material already delivered to companies
Mechanical fabrication

- Mechanical fabrication at RI & Zanon
 - deep drawing of half cells
 - welding of dumb bells
 - rf measurements
 - e-beam welding of 9-cell cavities
- Process qualification through production of reference cavities (RC) and dummy cavities (DC)

E-beam welding at Zanon (courtesy Zanon)
E-beam welding at RI (courtesy RI)
RF measurement and tuning equipment at RI
Mechanical fabrication

- All RCs and DCs produced and treated and RF tested at DESY

![Graph showing XFEL reference cavities Q0(E_acc)]

MOPB012 Alexey Sulimov (DESY)
First RF Measurement Results for the European XFEL SC Cavity Production
Surface Treatment

- Installation of equipment for surface treatment at companies almost finished
- Qualification of surface treatment in multi-step process with intermediate RF tests at DESY this fall

Furnaces for 120° C baking (courtesy Zanon)

Ultrasonic Cleaning and BCP in ISO 10 clean room (courtesy Zanon)

800° C annealing furnace (courtesy RI)
Cavity Measurements

- All 800 cavities CW power measured in vertical cryostat at AMTF
- Four cavities/cryostat
- Non-conforming cavities repaired at DESY infrastructure
- Conforming cavities shipped to Saclay

34 steps to perform:
- Assembly
- Cool down
- RF test
- Warm up
- Disassembly
Status of the European XFEL

10.09.2012, LINAC12, Tel Aviv
Winfried Decking, DESY

String Assembly
String Assembly

- Infrastructure installed at CEA Saclay (XFEL-Village) for string assembly
- Training of CEA staff with XFEL proto-type cavities
- Assembly will be performed by industrial operator
- Contract signed, training will start autumn this year
String Assembly

- 8 cavities
- 8 Power couples (LAL Orsay)
- 8 Cavity tuners (DESY)
- Quadrupole package (CIEMAT Madrid & DESY)
Module Assembly

- Cold masses from IHEP and Zanon
- Assembly at CEA Saclay
- Tools and infrastructure ready
- Training of industrial operator starts autumn 2012
Module Assembly

- Assembly:
 - string connected to the He return pipe (cold mass)
 - components aligned
 - insulation and shields
 - insertion into cryostat
 - Assembly of warm coupler parts
 - transportation preparation: assembly of end-caps, nitrogen filling of the cavities and assembly of surveillance instrumentation

- Road transport from CEA Saclay to DESY for final testing
Module Testing
where the cavities and the modules will be tested
Flow Diagram of Module Test

229 steps to perform:

- Assembly
- Cool down
- RF test
- Warm up
- Disassembly

- 2 weeks/module
- 3 test stands => 1 module/week tested
- Small fraction of non-conforming modules can be repaired at DESY
High Power RF System

- 10 MW multi-beam klystron
- Contract Awarded, first series klystrons delivered 8/2012

Pulse Transformer and klystron installed in tunnel

Modulator installed on surface
Connection with up to 2 km long pulse cables
All components ordered, cable installation starts next month
Waveguide Distribution

- Pre-installed in AMTF
- AMTF wave-guide test are
- the call for tender started with specified delivery date of first waveguide distribution system in autumn 2012
Low Level RF System

MicroTCA based LLRF system

- RMS amplitude regulation of 5×10^{-5}
- Phase regulation of 0.009°
- Expected beam energy stability $< 0.005\%$

THPB085 Julien Branlard (DESY)
LLRF Automation for the 9mA ILC Tests at FLASH
THPB086 Christian Schmidt (DESY)
Precision Regulation of RF Fields with MIMO Controllers and Cavity-based Notch Filters
Cold Linac Infrastructure

- Refurbishment of HERA cryo plant started
- Challenging schedule because of early operation start in 2014 to operate the XFEL injector
- Planning, production and installation of cryogenic equipment for accelerator and AMTF continued
Overall schedule – and its challenges

<table>
<thead>
<tr>
<th>Civil Construction</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>XTL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Halls XHEE, XHE1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LINAC Fabrication</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cavity Production</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>String Assembly</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module Assembly</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>XTL Installation & Commissioning</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrastructure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Machine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>final installation & cool down</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Start-up of series production and assembly**
- **final installation and commissioning**

Title of your talk

Start-up of series production and assembly

final installation and commissioning
Progress on construction, infrastructure planning and ramp up of accelerator component fabrication

Challenge to get the series production of accelerator modules started

Working hard to finish installation in time for

- start of injector commissioning mid 2014
- start of linac commissioning mid 2015
- observe first SASE by end of 2015

Thanks to all people contributing to this exiting project
Back Up
Conclusion:

Projecting to 8 cavities operating at 1.8 K, one should be able to reach 21.5 MV/m at DF=17% (flat-top 140 ms) at 20 W/cryomodule.
Prior surface treatment.
EP 110-140 μm (main EP), ethanol rinse, outside BCP, 800°C annealing, tuning

Final surface treatment - two alternative options
1. Final EP of 40 μm, ethanol rinse, high pressure water rinsing (HPR) and 120°C bake (RI)
2. Final BCP of 10 μm (BCP Flash), HPR and 120°C bake (EZ).

Integration of the helium tank, assembly of HOM, pick up and high Q antennas before vertical RF test