Superconducting RF R&D
toward High Gradient

C.M. Ginsburg
Fermilab

LINAC08
Victoria, BC, Canada
October 2, 2008
Outline

- State of the Art
- Cavity limitations
 - Studies to reduce field emission
 - Avoid localized electric field enhancement
 - Shape/manufacturing studies
 - Quench/Q-drop
 - Avoid localized magnetic field enhancement
- Investigations into cavity performance
- Outlook
High-gradient SRF cavity applications

<table>
<thead>
<tr>
<th>Project</th>
<th>Gradient [MV/m]</th>
<th># 9-cell cavities</th>
</tr>
</thead>
<tbody>
<tr>
<td>STF at KEK</td>
<td>35, 45</td>
<td>4, 4</td>
</tr>
<tr>
<td>NML at Fermilab</td>
<td>35</td>
<td>24</td>
</tr>
<tr>
<td>FLASH at DESY</td>
<td>23.8 (XFEL)</td>
<td>48</td>
</tr>
<tr>
<td>XFEL at DESY</td>
<td>23.8</td>
<td>808</td>
</tr>
<tr>
<td>Project X at Fermilab</td>
<td>23.8 – 31.5</td>
<td>287</td>
</tr>
<tr>
<td>International Linear Collider</td>
<td>31.5</td>
<td>14,560</td>
</tr>
</tbody>
</table>

Today: >23 MV/m, beta=1 elliptical cavity shapes only
We know how to get 35 MV/m

- RF Penetration Depth (~40nm)
- Surface Oxides (3~8 nm)
- \(R_z (1.5 \sim 5 \text{ nm}, \text{BCP, Polycrystalline Nb}) \)

- RF fields in ~40 nm of inner cavity surface
- Improve cavity performance
 - QC of material: pure (RRR >300), eddy current scanning of Nb sheets
 - Smooth cavity inner surface
 - No inclusions of foreign particles or topological defects, e.g., bumps & pits or sharp grain boundaries
 - No dust or other microscopic contaminants introduced after surface preparation
- Good cavity shape with low \(\text{Hpeak/Eacc} \) and low \(\text{Epeak/Eacc} \)
35 MV/m in data

- High pressure water rinsing (HPR)
- New Shape
- Electropolishing (EP) + HPR + 120°C Bake
- Chemical Polishing

35 MV/m

Various shapes (1-cell)

Tesla shape (9-cell)

DESY/US
Surface Processing

- **Initial preparation steps**
 - Remove ~150 um
 - electropolishing (EP)
 - At KEK centrifugal barrel polishing (CBP)
 - [or buffered chemical polishing (BCP); may get you to 20 MV/m]
 - 800C anneal

- **Final preparation steps**
 - Degreasing with detergent
 - Light electropolishing (~20 um)
 - High pressure rinsing (HPR) with ultrapure water
 - Drying in class-10 cleanroom
 - Evacuation
 - Low-temperature baking (120C)
Centrifugal Barrel Polishing

- Abrasive small stones placed into cavity with water to form a slurry; cavity is rotated
- Standard technique at KEK
- Material preferentially removed from equator region
- Standard cavities have equator weld; CBP smooths the weld

K. Saito

100回転 / min
Electropolishing (EP)

- Electrolytic current supported removal of metal
 - Niobium cavity is anode, aluminum cathode inserted on axis
 - Electrolyte is HF(40%):H₂SO₄ (1:9)
- Complementary to CBP; material removal preferentially on iris
- Results in mirror-smooth surface
Buffered Chemical Polishing (BCP)

- HF(40%):HNO₃(65%):H₃PO₄(85%) (1:1:2)
- Tends to enhance grain boundaries
 - May be sufficient for large-grain cavities
- It is “easy” to get 25 MV/m using BCP alone, for example
 - 1-cell AES cavities
 - DESY 9-cell (p.10)

Global gradient improvement after EP was introduced (p.5)

AES 1-cell cavities (BCP only)

- 4/5 test above 25 MV/m
BCP vs. EP

Test temperature: 2K

BCP sufficient to get to 20 MV/m

Gradient max ~25-30 MV/m (BCP)

Gradient max ~35-40 MV/m (EP)

BCP and EP results in higher gradients

DESY Production 3: Best tests with BCP (left) and EP (right)

200 μm

200 μm

2.Oct.2008 C.M. Ginsburg (FNAL) LINAC08
35 MV/m in data

- High pressure water rinsing (HPR)
- New Shape
- Electropolishing (EP)
 + HPR + 120°C Bake
- Chemical Polishing

Date [Year]

2001 2002 2003 2004 2005

Average Gradient [MV/m]

DESY/US

- DESY 1st BCP
- DESY 2nd BCP
- DESY 3rd BCP
- DESY 4th BCP
- US 1st BCP

Cavity batch

C. M. Ginsburg (FNAL) LINAC08
Studies to Reduce Field Emission

- Fresh EP
- Dry ice
- Degreasing
- Final rinse with ethanol
Fresh EP R&D

- 1-cell Ichiro shape
- Standard treatment: CBP+BCP+anneal+EP(80 μm) + HPR + bake (120°C*48hrs)
- Improvement in gradient and spread by the addition of fresh/closed 3 μm etch
- Raises gradient for onset of field emission (FE)
- Cannot be certain whether the final quench is caused by FE or by defect

E_{acc} = 39.1 \pm 8.2 \text{ MV/m}

Add fresh/closed 3 μm EP

E_{acc} = 46.7 \pm 1.9 \text{ MV/m}
Dry Ice Cleaning

- Rapid cooling embrittles contaminating particles
- Pressure and shearing forces as CO$_2$ crystals hit surface
- Rinsing due to 500x increased volume after sublimation
- LCO$_2$ is a good solvent/detergent for hydrocarbons and silicones etc.
- Dry process; no residues; horizontal orientation
 - Could perform after coupler installation
- Good results on 1-cell cavity tests, plan extension to 9-cells
One example: KEK 9-cell Ichiro-shape cavity tested at JLab

Ultrasonic cleaning with degreaser effective in reducing field emission
Ethanol rinse R&D

- DESY Production 4 cavities: 20 w/o ethanol and 13 w/ ethanol rinse
- Maximum gradient also improved (still large spread)
- Ethanol rinse effective to reduce or eliminate FE; now DESY standard

Table:

<table>
<thead>
<tr>
<th>Preparation</th>
<th>$\langle E_{\text{acc}}^{\text{max}} \rangle$ [MV/m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP w/o ethanol</td>
<td>27 ± 4</td>
</tr>
<tr>
<td>EP w/ ethanol</td>
<td>31 ± 5</td>
</tr>
</tbody>
</table>

- Ethanol rinse immediately following final EP to remove sulfur particles
- #tests with FE greatly reduced by introduction of ethanol rinse
Q-drop: Some cavities exhibit strong RF losses starting at $H_{\text{peak}} \approx 90-100 \text{ mT}$ \([21-24 \text{ MV/m for Tesla-shape}], \text{ without FE}\)

- Trapped vortices are trapped magnetic flux which become trapped at surface defects.
- Local thermal gradient applied to hot-spots caused hot spots to move and reduce intensity.
- Movement of the hotspots after applying the gradient indicates that heating is due to trapped vortices rather than local variation in BCS resistance.
- Works better on large-grain than fine-grain cavities – consistent with expectation of flux pinning strength.
Shape/manufacturing studies

- Investigating fundamental changes to cavities
 - Shape
 - improve Eacc/Hpeak
 - Fabrication
 - hydroforming
 - Material
 - large-grain, single-grain
 - atomic layer deposition
Alternative Shapes ≥ 50 MV/m

see Li et al., THP038, for whole new design

Tesla-shape cavity for comparison

World record: 59 MV/m Cornell 1-cell re-entrant shape

- Single-cell Ichiro-shape record is 53.5 MV/m [KEK Saito]
 - 46.7 +- 1.9 MV/m with optimized surface treatment parameters (p.13)
- 9-cell Ichiro-shape recently reached 32 \pm 4 MV/m in 5 process/test cycles (KEK/JLab)
- Low-loss shape reached 47.3 MV/m (DESY/KEK)
Large-grain/single-grain Nb cavities

- Potential advantages
 - Reduced manufacturing & processing cost
 - Smooth surfaces with BCP only (no EP)

- Many large-grain 1-cell & 9-cell and few 1-grain 1-cell cavities fabricated & tested
- Recent LG fabrication experience – cost advantage not yet realized
 - Grains at equators: ragged equator edges, material may thin/rip at equator, springback deforms half-cells – companies consider problems surmountable
 - Effective cutting method being pursued by W.C. Heraeus and Tokyo Denkai

- Recent LG performance experience – comparable to fine-grain cavities
 - Unclear whether BCP sufficient or EP necessary
 - Many 1-cell tests: ~30-48 MV/m
 - New 9-cell test results

- Single-crystal cavities
 - Difficult to produce large-Ø 1-grain ingots
 - Several 1-cell tests: ~38-45 MV/m
 - Study of crystal orientation effects needed
Hydroformed Cavities

- Remove equator weld as source of impurities or defects or inclusions
- 9-cell hydroformed cavity Z145
 - 3 3-cell units; 2 iris welds + beampipes
- Results: $E_{acc}=30.3$ MV/m, limited by quench, no FE
- High gradient Q-drop is pronounced, so the performance can be improved after 120°C baking as next step

Z145 reached 30 MV/m, quench limitation
Atomic Layer Deposition

- Increase RF breakdown magnetic field of superconducting cavities by multilayer coating of alternating insulating layers and thin SC layers (Gurevich, APL88, 012511 (2006))

- Atomic layer deposition (ALD)
 - Flow gas through cavity forming chemical bond with Nb surface
 - Chemical bond cannot flake off

- 1-cell cavity ALD at ANL
- RF test at JLab: 33 MV/m without Q-drop
- Promising new possibility

The primary niobium layer is covered with an insulator and superconductor. The top layer has high T_c, screens quench fields from the bulk niobium. Multiple layers permit almost arbitrarily large accelerating fields.

1-cell cavity ALD at ANL

RF test at JLab: 33 MV/m without Q-drop

Promising new possibility
Quenches and field emission appear as hot spots on outer cavity surface.
- Temperature mapping systems have been used for many years

New hot spot detection systems include
- Individual Cernox thermal sensors (FNAL)
- 2-cell Allen-Bradley temperature map (JLab)
- 9-cell T-map under development (LANL, FNAL)
- Second sound sensors (Cornell)
Quench Location with Fast Thermometry

- Example of cavity which quenched at 16 MV/m without field emission
 - Temp rise ~0.1 K over ~2 sec in sensors #3 & #4 before quench seen on all sensors
- Cernox RTD sensors (precise calibration, expensive) with fast readout (10 kHz)
- Flexible placement of sensors, attached to cavity surface with grease and band; slow installation
- Suitable for any cavity shape and highly portable
2- and 9-cell T-mapping

- 2-cell T-map
 - JLab using Allen-Bradley sensors
 - Requires two cooldowns, first with mode measurements
- 9-cell T-map
 - LANL using Allen-Bradley sensors and cold multiplexing
 - Promising preliminary results
 - FNAL using diodes
 - System under development
 - Could use on every test to find T-map on one cooldown
 - Designed for specific cavity shape
Quench location with 2nd Sound

- Second sound is a thermal wave which can propagate only in superfluid helium; generated when heat pulse is transmitted from heat source through SF He
- Eight sensors detect arrival of wave
- Quench location from relative signal timing
- Suitable for any cavity shape
Exciting Optical Inspection

Correlation with Thermometry

Two thermometers show the temperature rise.

The width of the thermometers are about 5mm.

24mm?

Two hot spots @ FNAL/JLAB

Three spots found @ Kyoto

Clever lighting technique and excellent spatial resolution 7μm/pixel

Kyoto U./KEK

2.Oct.2008 C.M.Ginsburg (FNAL) LINAC08
Optical Cavity Inspection

- Illumination by electroluminescent strips which can be turned off/on individually: shadows can be analyzed for 3D defect mapping (pit vs. bump) [bump is shown]
- Camera is inserted into cavity
- Digital images studied by a person – needs automation
- Many defects on several cavities now found, 50-600 um diameter
Optical Cavity Inspection

- Questar long-distance microscope for optical inspection
- Used for line-of-sight inspections, or combined with mirror
- Located defect on iris of AES4, suspected from mode meas. of inducing FE
- Located defect in heat-affected zone of equator weld on A15

Cornell also uses Questar technique
Additional optical inspection systems using borescopes under development at LANL and FNAL
Improving weld quality

- 3 in by 3 in samples electron-beam welded together, then 210 µm removed by EP
- Rinsed with ultrapure water - no HPR or ultrasonic detergent rinse
- Inspected with 3D microscope
- Most spots are debris and not pits
- Remains to be seen how to link to cavity performance
- Feed back information to EB welders to improve weld
Outlook

- Very high gradients have been measured in niobium superconducting cavities
 - > 50 MV/m in single-cell Ichiro, re-entrant, low-loss shape cavities
 - > 35 MV/m has been measured in several 9-cell Tesla-shape cavities
- Rich R&D activity in the quest for highest gradients and reduced cost
- Fabrication and material
 - Promising new results from large-grain, single-grain and hydroformed cavities
 - Some cavities are quench limited to 15-20 MV/m associated with intriguing bumps/pits
 - High-resolution optical inspection and T-mapping are very important tools
 - Sample studies underway in effort to reproduce features and improve weld quality
 - Provide feedback to cavity manufacturers to eliminate this problem
- Surface treatment is crucial for optimum performance
 - Several promising studies on final preparation methods to reduce field emission
- Fundamental material investigations
 - Loss mechanisms related to high-field Q-drop
 - Reduce power dissipation at highest gradients
 - New superconductor-insulator composites with atomic layer deposition
 - Could potentially break the critical magnetic field limitation of niobium