Abstract

Surface smoothness is critical to the performance of SRF cavities. As laser technology has been widely applied to metal machining and surface treatment, we are encouraged to use it on niobium as an alternative to the traditional wet polishing process where aggressive chemicals are involved. In this study, we describe progress toward smoothing by optimizing laser parameters on BCP treated niobium surface. Result shows that micro smoothing of the surface without ablation is achievable.

Result

Surface topography plays a role in SRF cavity performance [1]. Commonly used BCP removes material quickly, but leaves sharp features on the surface, which may cause problems (field enhancement model [2]). EP smoothes out sharpness but removes material slowly. Both chemistry methods involve using hazardous acid and has potential of introducing hydrogen into the metal. The concept of laser polishing is to partially melt the surface to remove sharp ridges.

Experiment

Laser beam

- Wavelength: 1064 nm
- Repetition rate: 19 kHz
- Pulse width: ~ 8 ns
- Spot size: 7.84x10^-4 cm^2 (FWHM)

Power spectral density (PSD)

- PSD provides detailed description about surface roughness and topography. Contributions from features at different scales are plotted as a function of spatial frequency. Surfaces with sharp edges (like BCP surface) usually show a straight line on PSD, while smooth surfaces (like EP surface) shows a curved PSD with two distinguishable stages.
- Smoothing effect from laser polishing is comparable to electropolishing (EP) in terms of PSD analysis [2]. PSD value greatly reduced at high spatial frequency range from several microns to hundreds of nanometers.
- Partial melting is preferred over full melting, which can leave “sharp” ridges and ripples.

Surface roughness before and after laser treatment at different fluences

<table>
<thead>
<tr>
<th>Fluence (J/cm^2)</th>
<th>RMS roughness (Rq) (nm)</th>
<th>RMS roughness (Rq) (nm)</th>
<th>RMS roughness (Rq) (nm)</th>
<th>RMS slope (Rdq) (°/nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (Before laser polishing)</td>
<td>0.3 J/cm^2</td>
<td>0.24 J/cm^2</td>
<td>0.18 J/cm^2</td>
<td>177.1</td>
</tr>
<tr>
<td>0.30</td>
<td>260.3</td>
<td>234.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.24</td>
<td>169.8</td>
<td>248.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.18</td>
<td>243.5</td>
<td>242.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Potential applications on niobium cavity

Engineering feasibility - The CavitrA Calibrated Optical Profilometry System (CYCLOPS) - an internal interferometric profilometry can map and profile the interior of an elliptical cavity [4].

Conclusion

- By selection of proper parameters, laser smoothing is achievable.
- For a pulse displacement of 1.82 um, a fluence of ~ 0.18 – 0.24 J/cm^2 is enough to melt the surface without damaging it. Microscopy shows that sharp edges are removed, and the step at grain boundary are smoothed as well. However, over-treating can result in sharp ripples.
- Laser polishing is a promising candidate for surface polishing in the pursue of environment friendly and fast treatment methods.

References

This work was supported by the U.S. Department of Energy Office of High Energy Physics under grant DE-FG02-10ER82035. The experiment was conducted at Jefferson Lab. Authors by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR22146. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purposes. Thanks to staff at the College of William and Mary characterization lab, especially Olga Trofimova for the AFM images. Thanks Che-Kye for the PSD program.