Innovative Design of the Fast Switching Power Supplies for the SOLEIL EMPHU Insertion and its Fast Correctors

F. BOUVET

On Behalf of the SOLEIL Power Supply Team
Content

• **Context of the project**
• **Power supply requirements**
• **Main power supply design**
 – Topology
 – Power converter sizing
 – Digital control loops
 – Dynamic performances
 – Influence of the real load behavior
• **Corrector power supplies**
 – Design
 – Power supply driving
• **ID Feedforward compensation**
• **Questions**
A new electromagnetic/permanent helical undulator, with a 65 mm magnetic period, is under development at SOLEIL.

This insertion device should provide a fast switching (< 100ms) of the photon polarization to perform dichroïsm experiments.

Design of the undulator *:

- Copper sheets: Coils → B_z
- Silicon-steel poles
- NdFeB permanent magnets → B_x

B. Marteau, “Development of an Electromagnetic/Permanent Helical Undulator for Fast Polarisation Switching”, PAC’09
Designed undulator

- **Prototype (SEF)**

 The prototype is fixed on 2 girders attached to a motorized carriage → Vertical movement to change peak field values

- **Coil cooling:** Use of thermal drain sheets cooled by tubing brazed to their outside edges

 1 thermal drain sheet for every 2 current carrier sheets → Every conductor has one surface in contact with a cooling plate (through insulation)
Innovative Design of the Fast Switching Power Supplies for the SOLEIL EMPHU Insertion and its Fast Correctors

F Bouvet

Power supply requirements

• **Main power supply:**
 - Feeding the coils producing the vertical field:
 - \(R = 130 \, \text{m}\Omega \); \(L = 4 \, \text{mH} \) to \(8 \, \text{mH} \) depending on the delivered current
 - 4-quadrant operation
 - Maximum current +/-350 A
 - Polarity switching time < 50 ms
 - Current precision: 100 ppm of the nominal current
 - Current reference: Trapezoïdal shape with rounded corners.
 Repetition rate will extend between DC and 5 Hz

• **8 Corrector power supplies:**
 - Feeding the correction coils used to compensate any beam closed orbit distortion consecutive to main field transitions
 - Rated between 10 A / 100 W and 20 A / 200 W
 - Should provide at least as fast response as the main PS and should be synchronised with it (< 1 ms)
Main power supply design

• **Structure of the converter:**

12-pulse rectifying unit + filter and energy storage
+ 2 interleaved PWM inverters + filter

AC mains | AC-DC stage | Intermediate DC stage | 4Q DC-DC stage

50 Hz step-down transformer | 12-pulse diode rectifier | Filter and energy storage | HF filtering + decoupling

2 interleaved PWM inverters + filter

Rather simple structure: Favours reliability and eases up maintenance
Main power supply design

- This topology choice is linked to the following considerations:

 - **AC-DC stage:**
 - Requirements: Galvanic isolation between mains and output load + adjustment of the DC link voltage level
 - Chosen solution: 50 Hz transformer + 12-pulse rectifier
 - Well-known and reliable solution
 - DC link voltage predominating harmonic theoretically at 600 Hz (easy to filter)
 - No additional power switches have to be controlled other than the ones used in the 4Q DC-DC stage: The whole converter can be controlled using a single SLS digital control unit → Increased reliability + reduced costs

 - **Intermediate DC stage:**
 - Formed by a slightly damped LC filter
 - Used to attenuate the harmonics produced by the 12-pulse rectification and to mitigate the impact of AC mains perturbations
 - When the load acts as a generator, the energy is transferred to the capacitor bank (energy storage)
Main power supply design

- **4Q DC-DC stage:**

 - The inverter section consists of 2 interleaved PWM H-bridges
 - Chosen interleaved PWM control strategy: 180° phase shift between leg 1 and leg 2 and between leg 3 and leg 4 + 90° phase shift between legs 1, 2 and legs 3, 4.

 ![Diagram of 4Q DC-DC stage]

 - Effective frequency at the output (and also in the DC-link HF filtering capacitors) = 4 times the IGBT switching frequency
 - Enables to conciliate the need of high bandwidth and good filtering of the output current

 ![Waveform images showing current and voltage]

 - $\alpha = 0.9$
 - $\alpha = 0.5$
 - Vge IGBT top legs 1, 2, 3, 4
 - I_{Out1} (Yellow) ; $\sum I_{Out}$ (Red) @ 350 A
Determination of the transformer ratio

Linked to:

- Power availability needed during transients
 Generation of the required current waveform with 20 kA/s di/dt \(\Rightarrow \) \(\frac{U_{\text{out max}}}{U_{\text{out static}}} \sim 3 \)
- AC mains voltage variations < +/-10%
- Maximum duty cycle of PWM signals: 0.95
 \(\Rightarrow \) With PWM period = 60 µs and IGBT leg dead time = 1 µs, the minimum duration of the PWM pulses is 1 µs (avoids pulse suppression by IGBT driver \(\Rightarrow \) Nonlinearities)
- Voltage drops across the components
 Ex: Transformer windings
 \(\Rightarrow \) \(U_{\text{secondary}} \) @ Ipeak \~ 92%. \(U_{\text{secondary}} \) @ no load
- Higher DC link voltage yields:
 \(\Rightarrow \) Increase of IGBT switching losses
 \(\Rightarrow \) Increase of output current distortion (IGBT dead time effect)

\[V_{\text{ch}} \sim (2 \cdot \alpha \cdot 1) \cdot V_{\text{dc}} \]

Transformer ratio = 6

Load current
Output voltage
DC link voltage
Transformer secondary currents
Operation @ 5 Hz
Power converter sizing

- LC filter at the rectifier output:
 - Resonant frequency: 25 Hz
 - Attenuation of the 600 Hz harmonic: 30 dB

- IGBT switching frequency:
 - Trade-off between efficiency, dynamic response and reliability
 - 17 kHz
 - IGBT modules: FF400R06KE3 from EUPEC
 - Measured efficiency of the whole converter at nominal power: 85% (η inverter: 90%)

- Power cycling capability of the IGBT modules
 Estimation using the power cycling curves provided by INFINEON for the 600V IGBT3 standard modules:
 - 7.1×10^{10} cycles at 5 Hz operation
 - 10^9 cycles at less than 1 Hz operation
Output filter:
- 3 dB cut-off frequency: 1500 Hz
- Peak gain: 2 dB
- Attenuation of 65 dB at 68 kHz (4 times the PWM frequency)

Influence on load current ripple of pulse repetition modulation (PRM) harmonics *:
- To overcome the resolution limits of classic digital PWM, a special pulse repetition modulation has been implemented by the Paul Scherrer Institute for the SLS controllers
 - Generation of low frequency harmonics
- In our application, the PRM spectrum can contain subharmonics of the PWM carrier-frequency down to 450 Hz (1/37 of the PWM frequency)

Output current distortion due to PRM harmonics < 10 ppm of nominal

Power converter sizing

- **Current transducer:**
 - DCCT Ultrastab 866 – 600 DANFYSIK:
 - Linearity error < 1 ppm
 - Ratio error: Initial < 2 ppm / vs. Temperature < 0.3 ppm/°C
 - Offset error: Initial < 20 ppm / vs. Temperature < 0.2 ppm/°C
 - Output noise DC – 10 kHz < 0.05 ppm

- **Control electronics:**
 - Use of SLS digital control cards *
 - Already in use at SOLEIL on the 3 Hz Booster power supplies
 - Well-proven and high performing electronics
 - Training on the DSP and FPGA software dispensed by DIAMOND
 - The whole converter can be controlled with a single control unit

* L. Tanner, F. Jenni, “Digital Control for Highest Precision Accelerator Power Supplies”, PAC’01

![Current stability graph](chart.png)
Timing of PSI digital control cards:

PWM Frequency = 17 kHz (60 µs)

PWM Sync
- Start of Conv. Precise ADCs
- A/D conversion precise ADCs
- Data Sampling

Start of Conv. Unprecise ADCs
- A/D conversion unprecise ADCs
- Data Sampling

Precise Data transfer

Unprecise Data transfer
- Begin data block
- Data arrived → IT regulation
- Regulation task

Load Current (= Mean of Precise Data)
measurement delay = 22.5 µs

Output voltage (Unprecise Data)
measurement delay = 20 µs

Computation time delay ~ Te = 30 µs

Sampling period: Te = 30 µs
Control scheme

Based on 2 nested loops:

- Fast inner voltage loop:
 PID controller + Feedforward

- High precision outer current loop:
 PI controller implemented under a R.S.T form

Di/dt Limitation + rounded corners

Inner Voltage Loop

Outer Current Loop

Diagram showing the control loops with various components and equations:

- DCCT
- IGBT Driver
- PWM
- Pulses IGBT top
- Control loops
- PSI Electronics
- V out measure
- I load measure
- MODULATION INDEX

Equations and components include:

- Digital control loops
- di/dt Limitation
- Outer Current Loop
- Inner Voltage Loop
- Modulation Index
- MAX/MIN_VOUT
- MAX/MIN_I_REF
- MAX/MIN_DI_REF_DT
- MAX/MIN_MOD1
- MAX/MIN_MOD
- MAX/MIN_DI_REF_DT
- +/- 20 kA/s
- K_FILT
- Te
- 1-z^-1
- Integrator
- Add
- Divide
- ADC_Delay1
- ADC_Delay2
- MAXMIN_MOD
- DSP_Delay
- Modulation Index

Innovative Design of the Fast Switching Power Supplies for the SOLEIL EMPHU Insertion and its Fast Correctors

F Bouvet – IPAC’11
Voltage loop design *:

The power converter can be modelled by a second order system:

\[
\frac{v_{out}}{m} = \frac{B_v(z^{-1})}{A_v(z^{-1})} = \frac{b_0 v + b_1 v \cdot z^{-1}}{1 + a_1 v \cdot z^{-1} + a_2 v \cdot z^{-2}}
\]

Control delay:

\[
D(z^{-1}) = z^{-1} \cdot \left(\frac{z^{-1} + 2}{3} \right) \cdot \left(\frac{z^{-1} + 1}{2} \right)
\]

Closed-loop transfer function:

\[
CL_v(z^{-1}) = \frac{D(z^{-1}) \cdot B_v(z^{-1}) \cdot R_v(z^{-1})}{A_v(z^{-1}) \cdot S_v(z^{-1}) + D(z^{-1}) \cdot B_v(z^{-1}) \cdot R_v(z^{-1})}
\]

where \(R_v(z^{-1})\) is the controller transfer function

PID controller

To limit the order of the controller, only the duty cycle computation time delay will be compensated.

The parameters of the controller are derived from a pole placement such that the voltage closed-loop behaves like a second order system with a cut-off frequency $F_{clv} = 2.5$ kHz (greater than the output filter resonant frequency) and a damping ratio $\xi_v = 0.7$:

$$A_v(z^{-1}) \cdot (1-z^{-1}) \cdot S_1_v(z^{-1}) + z^{-1} \cdot B_v(z^{-1}) \cdot R_v(z^{-1}) = 1 + d_1_v \cdot z^{-1} + d_2_v \cdot z^{-2}$$

Order of the controller: 2

$$S_2(z^{-1}) = (1-z^{-1}) \cdot S_1_v(z^{-1}) = (1-z^{-1}) \cdot (1 + s_1_v \cdot z^{-1})$$

$$R_v(z^{-1}) = r_0_v + r_1_v \cdot z^{-1} + r_2_v \cdot z^{-2}$$

An integrator is needed in the controller (zero steady-state error)

Computation time

Phase Margin: 50°
Gain Margin: 5 dB
Digital control loops

- **Feedforward control:**

 Improvement of dynamic and static behavior

 \[V_{dc_{FIL}} = \frac{1 + z^{-1}}{a0_F + a1_F \cdot z^{-1}} \cdot V_{dc_{MEAS}} \]

 → High frequency filter (Cut-off frequency: 6 kHz)

 \[m(k) = \frac{V_{out_{REF}}(k)}{V_{dc_{FIL}}(k)} \]

 600 Hz ripple ÷ 4
 < 5 ppm of nominal

- **Current loop design:**

 Computed considering that the voltage loop is unitary
 (because of ratio between bandwidths of inner and outer loops)

 System model with voltage loop:

 \[\frac{I_{Load}}{V_{out_{REF}}} = \frac{B_i(z^{-1})}{A_i(z^{-1})} \approx Z \left(\frac{1}{Z_{Load}} \right) = b_0 + b_1 \cdot z^{-1} \]

 Closed-loop:

 \[CL_i(z^{-1}) \approx \frac{B_i(z^{-1}) \cdot T_i(z^{-1})}{A_i(z^{-1}) \cdot S_i(z^{-1}) + B_i(z^{-1}) \cdot R_i(z^{-1})} \]

 \(R_i, \ S_i, \ T_i \) polynomials → IP controller
Closed-loop pole placement method:

\[A_i(z^{-1}) \cdot S_i(z^{-1}) + B_i(z^{-1}) \cdot R_i(z^{-1}) = 1 + d1_i \cdot z^{-1} + d2_i \cdot z^{-2} \]

Solve

Chosen cut-off frequency \(Fcli = 700 \text{ Hz} \) \(\rightarrow Fclv / Fcli = 3.5 \)

Damping ratio \(\xi_i = 1 \)

\[d1_i = -2 \cdot e^{-\xi_i \cdot 2 \cdot \pi \cdot Fcli \cdot T_e} \cdot \cos\left(2 \cdot \pi \cdot Fcli \cdot T_e \cdot \sqrt{1 - \xi_i^2}\right) \]

\[d2_i = e^{-\xi_i \cdot 4 \cdot \pi \cdot Fcli \cdot T_e} \]

Order of the controller: 1

\[S_i(z^{-1}) = 1 - z^{-1} \]

\[R_i(z^{-1}) = r0_i + r1_i \cdot z^{-1} \]

Polynomial \(T_i \):

- Chosen to assure unity gain to the closed-loop
- Designed so as to not introduce an undesirable zero in the closed-loop transfer function

Simple gain, directly given by the coefficients of \(R_i(z^{-1}) \):

\[T_i = r0_i + r1_i \]

- Tracking error in the ramps: @ \(F_B = 0.35 / \text{Tr} \) (90% rise time), Phase shift ~ 2,5° (0,5 ms)

@ \(L = L_{\text{min}} = 4 \text{ mH} \):
- Phase Margin: 40°
- Gain Margin: 13 dB
Simulation and experimental results:

Simulation of a current transition from -350 A to +350 A:
- Current settling time ~ 50 ms
- Overshoot almost equal to zero
- Tracking error in the ramps ~ 3%

Ok in our application (1 ms synchronisation requirement between main and corrector power supplies), but could be improved by designing appropriate zeros in the closed-loop transfer function. Ex: Predictive algorithm estimating $I_{REF(k+h)}$ by using linear extrapolation:

$$T_i(z^{-1}) = (r_0 + r_1) \cdot (1 + h - h \cdot z^{-1})$$

Operation @ 5 Hz on a 110 mΩ - 3 mH test load:
- Blue curve: Load current (150A/div)
- Green curve: Output voltage (50V/div)
- Red signal: High if control error below 100ppm of nominal
- Time scale (Zoom window): 20ms/div
Innovative Design of the Fast Switching Power Supplies for the SOLEIL EMPHU Insertion and its Fast Correctors

F Bouvet – IPAC’11

Influence of the real load behavior

- **Power tests with the undulator**

 The control loop parameters had to be optimized to achieve stable operation

 0 – 350 A variation
 - Yellow curve: Load current
 - Blue curve: Output voltage
 - Green signal: High if control error below 100ppm of nominal

 Equivalent circuit of the real load:

 \[Rs = \frac{V_{\text{step}}}{\Delta i_{\text{load}}} - R = 140 \text{ m}\Omega \]
Innovative Design of the Fast Switching Power Supplies for the SOLEIL EMPHU Insertion and its Fast Correctors

F Bouvet – IPAC’11

Influence of the real load behavior

Explanation:

Results from the structure of the coils.
Each of them = 25 layers of copper stacked together around the poles, among 9 are cooling plates.

Equivalent model of the undulator = Transformer which secondaries are short-circuited.
Seen from the primary, the model classically becomes:

\[Rs = 9 \cdot \frac{\rho \cdot l}{S} \cdot \left(\frac{16}{9}\right)^2 = 140m\Omega \]

Rs: secondary winding resistance reflected to the primary side.
The power supply dynamic performances can be improved by adding a feedforward term to the current controller output:

\[v_{REF}(k) = Z_{EST}(i_{REF}(k)) \cdot i_{REF}(k) \]

\[Z_{EST} = \frac{R + R_s \cdot T_e / L(i_{REF}) - (R + R_s) \cdot z^{-1}}{1 + R_s \cdot T_e / L(i_{REF}) - z^{-1}} \]

where \(Z_{EST} \) is the estimation of the load impedance.

However, a serious issue lies in the magnetic field settling time → About 300 ms

To overcome this problem, the thermal drain sheets (TDS) are currently under modification to increase the resistance value of the load secondary circuit:

With the gaps, the total magnetic field which crosses each TDS window (then surrounding 2 adjacent poles instead of only 1) is zero. With a resistance increase by a factor of at least 10, the 100 ms target for the magnetic field settling time can be reached.
A set of 8 bipolar power supplies is needed to feed the correction coils split between the entrance and the exit of the undulator.

These correctors are necessary to keep the field integral as low as possible during the main field transitions and to maintain the beam trajectory on the reference orbit.

Power supplies rated between 10 A / 100W and 20 A / 200 W

Structure:
Based on the use of either single or paralleled power operational amplifiers (PA12A from APEX)
Innovative Design of the Fast Switching Power Supplies for the SOLEIL EMPHU Insertion and its Fast Correctors

- Current settling time: ~ 15 ms (load time constant ~ 3 ms)

- In order to drive the corrector PS synchronously with the main PS, a special device has been developed. It consists of:
 - A 80 MHz µC on which the correction tables are shipped
 - Fast ADCs which generate @ a 1 kHz rate the analog setpoint signals driving each of the 9 power supplies

The 1 ms synchronisation requirement between the power supplies is met
ID Feedforward compensation

- **Ideal waveforms during changes of the main magnetic field:**
 - Step by step feedforward tables: To each main PS current value corresponds a set of corrector current values
 - Ideal compensation: The 9 power supplies begin ramping to the new setpoints synchronously and reach these setpoints at the same instants
 - The current slope of the power supplies is constant (unlike the corrector current steps) → the 9 power supplies do not reach their present setpoints at the same time
 - Suppression of (most of) the transitory effects on the beam position caused by this imperfect FFWD compensation

- **Real waveforms:**
 - SOLEIL Fast Orbit Feedback correction system *

* L-S. Nadolski et al., “Beam Position Orbit Stability Improvement at SOLEIL”, PAC’09
Thank you for your attention.
Questions?